
2018

Research Assistant Professor Applications Scientist

Matthew Fricke

Biological Computation Lab

Summer School



Models

Can	you	think	of	a	model	we	have	seen	in	class	that	address	each	of	the	
following.	(Work	with	the	person	next	to	you)

• A	model	that	makes	predictions about	some	system
• A	models	used	to	define	computation

• Existence	proof	models	(models	demonstrating	
the	possibility	of	something).

• A	model	used	to	explain something	that	already	
happened.

Matthew Fricke


Matthew Fricke
A model only makes sense in terms of some relation that is preserved.



Models

• `Now	it	would	be	very	remarkable	if	any	system	existing	in	the	real	
world	could	be exactly represented	by	any	simple	model.	However,	
cunningly	chosen	parsimonious	models	often	do	provide	remarkably	
useful	approximations.´

• `For	such	a	model	there	is	no	need	to	ask	the	question	"Is	the	model	
true?".	If	"truth"	is	to	be	the	"whole	truth"	the	answer	must	be	"No".	
The	only	question	of	interest	is	"Is	the	model	illuminating	and	
useful?”´.

Box, G. E. P. (1979), "Robustness in the strategy of scientific model building", in Launer, 
R. L.; Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201–236.



Models

• `Now	it	would	be	very	remarkable	if	any	system	existing	in	the	real	
world	could	be exactly represented	by	any	simple	model.	However,	
cunningly	chosen	parsimonious	models	often	do	provide	remarkably	
useful	approximations.´

• `For	such	a	model	there	is	no	need	to	ask	the	question	"Is	the	model	
true?".	If	"truth"	is	to	be	the	"whole	truth"	the	answer	must	be	"No".	
The	only	question	of	interest	is	"Is	the	model	illuminating	and	
useful?”´.

• “All	models	are	wrong,	some	are	useful.”

Box, George. E. P. (1979), "Robustness in the strategy of scientific model building", in 
Launer, R. L.; Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201–236.



Models as Homomorphic Maps
Commutativity of the Diagram

Algorithm A

Laws LWorld at time t World at time t + 1

Model at time t + 1Model at time t 

.
Modeling Relation M Modeling Relation M

M is an equivalence relation.
Model M is valid if this is a homomorphic map:
M(L(x)) = A(M(x))

Stephanie	Forrest



transformation of one set into another that preserves in 
the second set the relations between elements of the first.

Algorithm A

Laws LWorld at time t World at time t + 1

Model at time t + 1Model at time t 

.
Modeling Relation M Modeling Relation M

Models as Homomorphic Maps



Models

• “It	can	scarcely	be	denied	that	the	supreme	goal	of	all	theory	is	to	
make	the	irreducible	basic	elements	as	simple	and	as	few	as	possible	
without	having	to	surrender	the	adequate	representation	of	a	single	
datum	of	experience.”

Attributed	to	Albert	Einstein	in	“On	the	Method	of	Theoretical	Physics,”	the	Herbert	Spencer	Lecture,	Oxford,	
June	10,	1933.	This	is	the	Oxford	University’	Press



Equivalence Classes (CS261)
• Equivalence class = 

• R is an equivalence relation:
• Reflexive:
• Symmetric:
• Transitive: 

• Example: xRy <=> x and y are in the same little box.

€ 

{x | x∈R} and R is an equivalence relation.

)(xRxx∀
yRxxRy⇒

)()()( xRzyRzxRy ⇒∧

Set of Objects Partition set into 6 little 
boxes

. . .. . . . . .
.

.
.

.  .  . 

.  .  .
Equivalence classes

Stephanie	Forrest

Matthew Fricke
The relation does not change unless world changes, the relation is preserved between the model and world, the model and world stay consistent over time.  

Matthew Fricke




Examples of Equivalence Relations
• �Is similar to" or "congruent to" on the set of all triangles.
• Logical equivalence of statements in logic.
• "Has the same image under a function" on the elements of the domain of the 

function.
• What�s not an equivalence relation?

• The relation "≥" between real numbers is reflexive and transitive, but not 
symmetric. For example, 7 ≥ 5 does not imply that 5 ≥ 7. It is, however, a 
partial order.

• The relation "is a sibling of" on the set of all human beings is not an 
equivalence relation. 

• Is Symmetric (if A is a sibling of B, then B is a sibling of A) 
• Not reflexive (no one is a sibling of himself),
• Not transitive (since if A is a sibling of B, then B is a sibling of A, but A is not a sibling of A). 

Stephanie	Forrest



Example Homomorphism: 
Multiplication of Integers

• Model all pairs of integers and their product:
• e.g., 14792 x 4183584 = 61883574528

• Model:
• Even X Even = Even
• Even X Odd  = Even
• Odd X Even = Even
• Odd X Odd = Odd

Stephanie	Forrest



Example Homomorphism: 
Multiplication of Integers

Model:
Even	x	Even	=	Even
Even	x	Odd	=	Even
Odd	x	Odd	=	Odd
Odd	x	Even	=	Even

Model	relationship:

2n	x	2m	=	2k	R Even	x	Even	=	Even
2n+1	x	2m+1		=	2k+1	R Odd	x	Odd	=	Odd
2n	x	2m+1	=	2k	R Even	x	Odd	=	Even
2n+1	x	2m	=	2k+1	R Odd	x	Even	=	Even

Model:
Even	x	Even	=	Even
Even	x	Odd	=	Even
Odd	x	Odd	=	Odd
Odd	x	Even	=	Even

M(L(x))	=	M(2n	x	2m	=	2k)	=	Even	x	Even	=	Even

The	relationships	are	preserved	under	our	
model.



• Gasses	and	fluids	can	be	modelled	with	continuous	models
• That	is,	we	can	use	continuous	values	of	pressure,	temperature,	and	
velocity

Lattice	Gas	Models	(LGCA)



• Gasses	and	fluids	can	be	modelled	with	continuous	models
• That	is,	we	can	use	continuous	values	of	pressure,	temperature,	and	
velocity

• What	happens	when	we	get	to	extreme	cases:	
• If	we	are	modelling	a	disk	drive	head	moving	just	a	micron	above	the	platter	
these	continuous	models	break	down.	

• We	have	to	model	the	individual	molecules	of	gas.

Lattice	Gas	Models



• Gasses	and	fluids	can	be	modelled	with	continuous	models
• That	is,	we	can	use	continuous	values	of	pressure,	temperature,	and	
velocity

• What	happens	when	we	get	to	extreme	cases:	
• If	we	are	modelling	a	disk	drive	head	moving	just	a	micron	above	the	platter	
these	continuous	models	break	down.	

• We	have	to	model	the	individual	molecules	of	gas.

• If	we	are	modelling	systems	with	very	high	energies	(such	as	a	nuclear	
explosion)	we	have	to	have	a	discrete	model	of	the	internal	states	of	
the	atoms	involved.

Lattice	Gas	Models



• If	the	molecules	are	very	cold	quantum	effects	start	to	dominate	their	
interactions.	

• Here	we	have	to	model	the	quantum	effects	explicitly.	

Lattice	Gas	Models



• If	the	molecules	are	very	cold	quantum	effects	start	to	dominate	their	
interactions.	

• Here	we	have	to	model	the	quantum	effects	explicitly.	

• These	systems	require	models	of	the	microscopic behaviour

• Models	that	are	able	to	describe	the	behaviour	of	the	system	using	just	
pressure,	velocity,	and	temperature	are	macroscopic.	

• Of	course,	we	could	model	all	gasses	and	fluids	at	the	microscopic	level.	

Lattice	Gas	Models



• Cellular	automata	are	used	to	model	
molecular	systems.	

• The	use	of	cellular	automata	to	model	
particles	such	as	gasses,	fluids,	and	

• The	propagation	of	subatomic	
particles	was	pioneered	by	Stanislaw	
Ulam and	John	von	Neumann	in	the	
1950s.

Lattice	Gas	Models

Stanislaw	Ulam with	the	FERMIAC,	used	to	model
neutron	transport,	Los	Alamos	National	Labs
MCNP SOFTWARE QUALITY: THEN AND NOW Gregg C. Giesler, 
Los Alamos National Laboratory LA-UR-00-2532; 16 October 2000



Copyright	©	2001. Soil	Science	Society. Published	in	Soil	Sci.	Soc.	Am.	J.65:1577–1584.



Immune System Signaling (abridged)

Invader

Invader Invader

Invader

Macrophage

Macrophage encounters 
an invader



Immune System Signaling (abridged)

Invader
Invader

Invader

Macrophage

Macrophage destroys 
the invader



Immune System Signaling (abridged)

Invader
Invader

Invader

Macrophage

Macrophage displays 
proteins from the invader



Immune System Signaling (abridged)

Macrophage T-Cell

T-Cell

T-Cell

T-Cell are activated by 
the macrophage if their 
receptors match the 
displayed proteins

we care about this…



Immune System Signaling (abridged)

Macrophage T-Cell B-Cell
(Memory)

B-Cells confirm that the proteins 
are from a pathogen encountered 
previously.

…and we care about this



B-Cell
(Plasma)

Immune System Signaling (abridged)

T-Cell

Invader
Invader

Invader

B-Cells change state 
and emit antibodies that 
bind to the invader



Immune System Signaling (abridged)

Macrophage

Macrophage

Macrophage

Macrophage

Macrophage

InvaderInvader

Invader

Invader

Invader

Macrophages are recruited 
to the antibodies



Immune System Signaling (abridged)

Macrophage

Macrophage

Macrophage

Macrophage

Macrophage

Invader

Recruited macrophages 
destroy the invaders and 
display their proteins. 

The cycle repeats and 
the immune response 
increases exponentially.



Foreign protein snippets are 
displayed by macrophage

Receptors that match 
particular protein snippets 
are displayed by T-cells.

In vivo, T cells are stimulated by monovalent binding to ligands
on “antigen presenting cells” (e.g. Macrophages and B-Cells)



In vivo, T cells are stimulated by monovalent binding to ligands
on “antigen presenting cells” (e.g. Macrophages and B-Cells)

The macrophage comes into 
contact with various T-cells.



In vivo, T cells are stimulated by monovalent binding to ligands
on “antigen presenting cells” (e.g. Macrophages and B-Cells)

If the T-cell receptors match 
the protein snippet held by 
the ligands then they bind…

… and the ligands cluster together 
and the receptors cluster together. How?



Our hypothesis: Cross Membrane binding between ligand-receptor 
pairs serves to combine the attractive forces between proteins in their 
own membranes. This would allow receptor or ligand groups that by 
themselves are do not cluster to “sum” the attractive forces and cluster.

Sounds simple but we can’t predict how strong the inter-membrane 
force needs to be in relation to the intra-membrane forces to cause 
phase separation.    So model it!



Our Approach
! Write a model of phase separation on a single 

membrane
! Confirm that our results match those of previous 

phase transition models
! Implement two copies of the single membrane model 

and bring them into contact
! Add a cross-membrane binding force
! Under what circumstances do we get phase 

separation?



Protein Random Direction

Metropolis Monte Carlo
• n x n toroidal lattice
• Each site on the lattice can hold 
a single protein
• At each discrete time-step all 
proteins choose a random 
direction to move
• If the energy is reduced the 
motion is accepted.

• Otherwise the motion is accepted 
with probability               .

• Repeat until we are confident 
that the system is in equilibrium= Favorable contact energy (in kT) 

between neighboring proteins.

ε)/( kTe ΔΕ−



Measuring Phase Separation – Spatial 
Autocorrelation

• Autocorrelation Function g(d)
• Choose a protein and count 
the number of proteins at 
distance d (then      4 .)

d

÷



The system probabilistically (Monte Carlo) enters a new lower energy 
configuration. The probability depends on how much the energy is decreased.

Where the energy change is given by the binding energy Npp at 
the proposed site, s1 verses the current site s0.

TemperatureBoltzmann Constant

https://www.google.com/search?safe=strict&client=safari&rls=en&q=probabilistically&spell=1&sa=X&ved=0ahUKEwj_mZCP4dDbAhXD7oMKHXUkCgIQkeECCCYoAA


The system probabilistically (Monte Carlo) enters a new lower energy 
configuration. The probability depends on how much the energy is decreased.

Where the energy change is given by the binding energy Npp at 
the proposed site, s1 verses the current site s0.

TemperatureBoltzmann Constant

Not a dynamics model! The Monte Carlo model is sampling the space of
possible protein configurations. The sites S0 and S1 could have 
been chosen randomly.

https://www.google.com/search?safe=strict&client=safari&rls=en&q=probabilistically&spell=1&sa=X&ved=0ahUKEwj_mZCP4dDbAhXD7oMKHXUkCgIQkeECCCYoAA


The system probabilistically (Monte Carlo) enters a new lower energy 
configuration. The probability depends on how much the energy is decreased.

Where the energy change is given by the binding energy Npp at 
the proposed site, s1 verses the current site s0.

TemperatureBoltzmann Constant

Not a dynamics model! The Monte Carlo model is sampling the space of
possible protein configurations. The sites S0 and S1 could have 
been chosen randomly.

Microstate reversibility: Metropolis rule.

https://www.google.com/search?safe=strict&client=safari&rls=en&q=probabilistically&spell=1&sa=X&ved=0ahUKEwj_mZCP4dDbAhXD7oMKHXUkCgIQkeECCCYoAA


Predictions from Theory

The protein autocorrelation will scale with binding energy as:



Predictions from Theory

The protein autocorrelation will scale with binding energy as:

Time spent proteins spend bound (p) vs unbound (u):

c is the concentration of proteins.



The effective interprotein interaction is:

Predictions from Theory
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This successful fit confirms that 
our model  matches previous 
work on phase separation



Two Membrane Model



Calculating the autocorrelation, exponents, and critical exponents is too slow 

Instead: calculate the protein density for all overlapping 3x3 squares on the lattice

Standard deviation is a measure of phase separation 

Low σσσσ, one phase High σσσσ, two phase

Density variance as a measure of phase separation



ϕεε === zyx c ,,

Complete phase 
separation occurs at 
0.27

Random protein 
distributions have 
been observed to have 
z values of between 
0.09 and 0.105
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RuleBuilder Layout

The Drawing Board is where

containers, components,

edges and operators can be

placed in order to create the

molecules, species, reaction

rules, observables, and

patterns that form a

BioNetGen model.

Defined objects, such as

Molecule Templates,

Species, and Reaction

Rules are displayed in

separate windows.

Toolbar



Adding Containers and Components

A component is added by

entering “Add Components”

mode on the toolbar and

left-clicking in the Drawing

Board.

Add Container

Mode.



Renaming Components and

Containers

Components and Containers

can be renamed by left-clicking

their label. Only alphanumeric

characters and the underscore

are allowed in labels.



Resizing Containers

Containers can be resized

by dragging the “resize

handles” that appear when

they are selected.

Selected Containers

always appear blue.



Creating Molecule Types

To define a molecule type,

add the desired components

to the molecule, then right

click (ctrl-click on Mac) on

the container and select

Create Molecule Type.

Molecules used in a model have to be defined and registered as a

“Molecule Type” before they can be used in reaction rules and

species.



Setting Allowed Component States
Components may take on different states to indicate

conformation or covalent modification, such as phosphorylation.

Selecting Create Molecule

Type brings up the

Component State dialog.

Add an allowed state by

typing in the Add Allowed

State box and clicking Add.

Components don’t need to

have any allowed states.

Exit the dialog by clicking

Done.



Identifying Valid and Invalid

Molecules

Molecule Types appear here

Containers matching

valid types are green.

Containers not

matching a valid type

are red.

Dashed line indicates

an incomplete match.



Copying Objects with the Selection

Box
Draw a box around objects on the

Drawing Board to select them.

Partially enclosed objects are not

selected.



Copying Objects with the Selection

Box

Clicking and dragging the

selection box moves everything

selected; holding down the shift

key while dragging copies the

selection to a new location.



Creating a Reaction Rule

Reaction rules are created by arranging containers and operators to construct a

formula for the reaction.

The ‘+’ operator separates

reactants or products in a

list.

The arrow operator

separates reactants and

products.



Creating a Reaction Rule

The type of arrow determines

whether a reaction is

reversible or irreversible.



Defining Products

Use Add Edges to create a

bond between the

components



Defining Products

Create the bond by clicking

on the two components to be

linked.



Creating the Rule

Draw a selection box

enclosing the rule, right-click

(ctrl-click on Mac), and select

Make Rule.

If Make Rule is grayed out,

make sure all of the objects

are valid and the box is

enclosing all of the elements.



Make Rule Dialog

Set Rule Name, rate

constants, and optional

annotation in the dialog box.

For a parameter being used

for the first time, set a

numerical value in the Rate

box.



Reaction Rules Window

Rule now appears in the

Reaction Rules Window.



Defining Seed Species

The network is defined by applying the reaction rules to a set of seed species.

Draw a selection box around a

connected set of molecules and right-

click (ctrl-click on Mac) to define a

species.

All items in selection box should have

solid green lines, indicating the the

molecules are fully defined.



Species Dialog Box

A dialog box appears for setting the

name and initial concentration of the

species.



Seed Species Window

New species appears in the Seed

Species Window.



Defining Observables
Observables are concentration sums over species with particular properties and

correspond to model outputs, such as total phosphorylation of a protein.

Draw a selection box around the

pattern defining the Observable, right

click (ctrl-click on Mac) and select

Make Observable.

If this option is not available, make

sure that all molecules in the

observable are defined.



Make Observables Dialog

Set Rule Name and Type.

Type Molecules weights the

concentration of each matching species

by the number of times the defined

pattern matches the species.

Use this for quantities like total

phosphorylation of a site on a protein or

total number of receptors in aggregates.

Type Species gives unit weight to the

concentration of each matching species.

Use this type to get the concentration of

complexes of a particular type.



Observables Window

If the Observables Window is

not visible, Select Observables

Palette from the View menu.



Observables Window

The Observables Window



Running the Model
Once Reaction Rules, Seed Species, and Observables (optional) have been

defined, the model can be simulated by pressing Run BioNetGen button.



BioNetGen Engine Settings

Use the Browse buttons to set paths for the

BioNetGen Engine and the Work file.

These settings can also be changed by selecting

Settings under the File menu.



The SimConfig Panel

The Reaction Network Generation and Simulation

Settings Dialog appears the first time a simulation is

run.  Use these options to control how the simulation

will be run.

This panel can also be accessed on the tool bar.



The SimConfig Panel

The size of complexes and the

reaction network can be limited by

setting maximum values for the

stoichiometry of molecules.



The SimConfig Panel

A portion of the network may be

preequilibrated by selecting “run

equilibrate” and a subset of

defined seed species.



The SimConfig Panel

The total simulation time and the

times at which concentrations are

sampled are set here.



The SimConfig Panel

Either a stochastic (SSA) or a

deterministic (ODE) simulation

method may be chosen.



The SimConfig Panel

SBML output may be

selected for export of the

generated network to other

applications.



The Log Window

The Log Window displays

the output of BioNetGen.

Running the simulation brings

up the BioNetGen Output Log

or Log Window



Plotting the Results
Once the simulation

is finished, selecting

the Plot Results

button brings up a

plotting window for

the simulation results.



Plotting the Results

Either observables or

species may be plotted.

Available

Observables or

Species are

shown here.



Plotting the Results

A plot of the

defined

observable.





Thymus

Ultimate Naïve T cell
source

Peripheral Tissue
Drains from lymphatic channels Infected Cell

Naïve T cell

Activated T cell

Dendritic Cell

Blood Vessels

Drain to other lymph 
nodes and blood vessels

Naïve T cell
Source

Antigen

Balancing Extent and Intensity for Target Detection Error



Thymus

Ultimate Naïve T cell
source

Peripheral Tissue
Drains from lymphatic channels Infected Cell

Naïve T cell

Activated T cell

Dendritic Cell

Blood Vessels

Drain to other lymph 
nodes and blood vessels

Naïve T cell
Source

Antigen

Balancing Extent and Intensity for Target Detection Error

Rate Limiting Step



The Needle in a Haystack
Lymph nodes have a volume 106 times that of T 
cells.

100k T cells and 100k DCs. Small set of these are 
congnate.

T cells move at an average speed of of 0.11 μm/s.

T cells searching systematically (raster scan) would 
discover an antigen target in 6 days on average.

Simple random walkers (Brownian) have an 
expected 30% success rate after 3 days.[1] 

T cells are able to find cognate antigen in 3-8 
hours and give up after 12-24 hours.

<-- DCs in green, T cells in red
Janie Rae Byrum

[1] Preston, S. P., et al. "T-cell motility in the early stages of the immune response modeled as a random walk amongst targets.”
Physical Review E 74.1 (2006): 011910.



Background: Intensive vs Extensive Search

5

• We can describe any stochastic search 
pattern with distributions of vector lengths
and turning angles.



Background: Intensive vs Extensive Search

• Intensive searchers have lower 
displacement but search more thoroughly.
• Simple random search (Brownian motion) 

will eventually cover the entire area.

6

• We can describe any stochastic search 
pattern with distributions of vector lengths
and turning angles.



Background: Intensive vs Extensive Search

• Intensive searchers have lower 
displacement but search more thoroughly.
• Simple random search (Brownian motion) 

will eventually cover the entire area.

7

• Extensive searchers cover more ground but 
leave gaps.
• Mean Squared Displacement (MSD) is a 

measure of search extent 

• We can describe any stochastic search 
pattern with distributions of vector lengths
and turning angles.



8

Lab Experiment

Two-photon microscopy

131 ex vivo observations
25,000 T cells tracked
Half hour observations



Extracting Tracks from Fluorescence
in collaboration with the Cannon lab



Building a statistical model of T cell Search



Displacement: Distance 
travelled from starting 
position.
Simple random walk 
Would have a log 
transformed MSD 
with slope α =1
and      = 2.

We see a slope of α =1.41
Superdiffusion.

Fractal dimension = 1.41 

(This is our measure of
the intensity-extent trade-off)

H

↵

↵
↵ = 1.41
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Modelling T cell Search: Fit Step Lengths

[1] Clauset, Aaron "Power-law distributions in empirical data." SIAM 
review (2009)
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Modelling T cell Search: Fit Step Lengths

Fricke, G. Matthew, et al. "Persistence and adaptation in immunity: T cells balance the 
extent and thoroughness of search." PLoS computational biology 12.3 (2016): e1004818.
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• The lognormal CDF is still 
a good fit. 

• Exponential is also good. 

• This pattern of 
movement is somewhat
less intensive than in
lymph nodes.

T cell Search in the Lung

Paulus Mrass et al., "ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs,” Nature Communications, 2017



Modelling T cell Search: Angle Correlation (Search in Lungs and T cells look similar)

Measure of correlation with previous direction. Correlated random walk?
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Why don’t T cells use the parameters that result in the most unique 
contacts?



T cells have to revisit antigen multiple times for ligand 
and receptor rafts to form and signal to be properly integrated. [1,2]

Why don’t T cells use the parameters that result in the most unique 
contacts?

[1] Fricke and Thomas, BioPhysical Chemistry (2006)



T cells have to revisit antigen multiple times for ligand 
and receptor rafts to form and signal to be properly integrated. [1,2]

Why don’t T cells use the parameters that result in the most unique 
contacts?

As rarity (expected distance between targets and searcher) 
increases extensive search does better [3].
Intensive search does better when cognate antigen is common. T cells 
are able to take advantage of both. 
[1] Fricke and Thomas, BioPhysical Chemistry (2006)
[2] Celli, S. et al. Immunity, (2007)
[3] Zhao, K., et al. Journal of The Royal Society Interface (2015) 
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In other work: Beyond Random Walks

Fibroblastic Reticulum Cells (FRC)

There are theories that depend 
on T cell associations with FRC 
Network and HEVs [1,2,3]

No signs of chemical attraction 
Between T cells and DCs contrary 
to [4].

[1] Novkovic, Mario, et al. "Topological small-world organization of the 
fibroblastic reticular cell network determines lymph node functionality." PLoS
biology 14.7 (2016): e1002515.
[2] Textor, Johannes, Judith N. Mandl, and Rob J. de Boer. "The reticular cell 
network: a robust backbone for immune responses." PLoS biology 14.10 
(2016): e2000827.
[3] Girard, Jean-Philippe, Christine Moussion, and Reinhold Förster. "HEVs, 
lymphatics and homeostatic immune cell trafficking in lymph nodes." Nature 
Reviews Immunology 12.11 (2012): 762-773.
[4] Riggs, Thomas, et al. "A comparison of random vs. chemotaxis-driven 
contacts of T cells with dendritic cells during repertoire scanning." Journal of 
theoretical biology250.4 (2008): 732-751.
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T cell Search Summary
• T cells are superdiffusive when searching lymph nodes 

and lung tissue, helping to explain their efficiency.
• The search pattern in lymph nodes allows for signal 

integration (less important in lungs).
• Associated with the FRC small world network which 

may also increase efficiency.
• Little spatial correlation with DCs which argues against 

DC recruitment.
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