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Models

A model only makes sense in terms of some relation that is preserved.

* A model that makes predictions about some system
A models used to define computation

» Existence proof models (models demonstrating
the possibility of something).

A model used to explain something that already
happened.
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A model only makes sense in terms of some relation that is preserved.


Models

* 'Now it would be very remarkable if any system existing in the real
world could be exactly represented by any simple model. However,
cunningly chosen parsimonious models often do provide remarkably

useful approximations.”

* 'For such a model there is no need to ask the question "Is the model
true?". If "truth" is to be the "whole truth" the answer must be "No".
The only question of interest is "Is the model illuminating and
useful?””.

Box, G. E. P. (1979), "Robustness in the strategy of scientific model building", in Launer,
R. L.; Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201-236.



Models

* 'Now it would be very remarkable if any system existing in the real
world could be exactly represented by any simple model. However,

cunningly chosen parsimonious models often do provide remarkably
useful approximations.”

* 'For such a model there is no need to ask the question "Is the model
true?". If "truth" is to be the "whole truth" the answer must be "No".

The only question of interest is "Is the model illuminating and
useful?””.

* “All models are wrong, some are useful.”

Box, George. E. P. (1979), "Robustness in the strateqy of scientific model building”, in
Launer, R. L.; Wilkinson, G. N., Robustness in Statistics, Academic Press, pp. 201-236.



Models as Homomorphic Maps
Commutativity of the Diagram

World at time t Laws L world at time t + 1

Algorithm A

Modeling Relation M Modeling Relation M

Model at time t Model at time t + 1

M is an equivalence relation.
Model M is valid if this is a homomorphic map:
M(L(x)) = A(M(x))

Stephanie Forrest



Models as Homomorphic Maps

transformation of one set into another that preserves in
the second set the relations between elements of the first.

World at time t Laws L World at time t + 1

Algorithm A

Modeling Relation M Modeling Relation M

Model at time t Model at time t + 1



Models

* “It can scarcely be denied that the supreme goal of all theory is to
make the irreducible basic elements as simple and as few as possible
without having to surrender the adequate representation of a single
datum of experience.”

Attributed to Albert Einstein in “On the Method of Theoretical Physics,” the Herbert Spencer Lecture, Oxford,
June 10, 1933. This is the Oxford University’ Press



Equivalence Classes

* Equivalence class =
{xIx&ER} and R 1s an equivalence relation.

The relation does not change unless

R 1S an equivalence relation: world changes, the relation is

. Reflexwe.: | :’;ﬁxix))/Rx preserved between the model and
. Symrr?gtrlc. world, the model and world stay
» Transitive: (xRy) A (YRz) = (XRz) consistent over time.

« Example: xRy <=> x and y are in the same little box.

Set of Objects Partition set into 6 little Equivalence classes
boxes

Stephanie Forrest


Matthew Fricke
The relation does not change unless world changes, the relation is preserved between the model and world, the model and world stay consistent over time.  

Matthew Fricke



Examples of Equivalence Relations

« “Is similar to" or "congruent to" on the set of all triangles.
» Logical equivalence of statements in logic.

« "Has the same image under a function" on the elements of the domain of the
function.

« What' s not an equivalence relation?

* The relation "=" between real numbers is reflexive and transitive, but not
symmetric. For example, 7 = 5 does not imply that 5 = 7. It is, however, a
partial order.

* The relation "is a sibling of" on the set of all human beings is not an
equivalence relation.

* Is Symmetric (if Ais a sibling of B, then B is a sibling of A)

* Not reflexive (no one is a sibling of himself),
* Not transitive (since if A is a sibling of B, then B is a sibling of A, but A is not a sibling of A).

Stephanie Forrest



Example Homomorphism:

Multiplication of Integers

* Model all pairs of integers and their product:
*e.g., 14792 x 4183584 = 61883574528

 Model:
 Even X Even = Even

e Even X Odd = Even
* Odd X Even = Even
 Odd X Odd = Odd

Stephanie Forrest



Example Homomorphism:

Multiplication of Integers

Model: M(L(x)) = M(2n x 2m = 2k) = Even x Even = Even
Even x Even = Even

Even x Odd = Even
Odd x Odd = Odd
Odd x Even = Even model.

The relationships are preserved under our

Model relationship:

2n x 2m = 2k R Even x Even = Even

2n+1 x 2m+1 = 2k+1 R Odd x Odd = Odd
2n x 2m+1 = 2k R Even x Odd = Even
2n+1 x 2m = 2k+1 R Odd x Even = Even



Lattice Gas Models (LGCA)

e Gasses and fluids can be modelled with continuous models

* That is, we can use continuous values of pressure, temperature, and
velocity



Lattice Gas Models

e Gasses and fluids can be modelled with continuous models

* That is, we can use continuous values of pressure, temperature, and
velocity

* What happens when we get to extreme cases:

* |f we are modelling a disk drive head moving just a micron above the platter
these continuous models break down.

* We have to model the individual molecules of gas.



Lattice Gas Models

e Gasses and fluids can be modelled with continuous models

* That is, we can use continuous values of pressure, temperature, and
velocity

* What happens when we get to extreme cases:

* |f we are modelling a disk drive head moving just a micron above the platter
these continuous models break down.

* We have to model the individual molecules of gas.

* If we are modelling systems with very high energies (such as a nuclear
explosion) we have to have a discrete model of the internal states of
the atoms involved.



Lattice Gas Models

* If the molecules are very cold quantum effects start to dominate their
interactions.

* Here we have to model the quantum effects explicitly.



Lattice Gas Models

* |f the molecules are very cold quantum effects start to dominate their
interactions.
* Here we have to model the quantum effects explicitly.

* These systems require models of the microscopic behaviour

* Models that are able to describe the behaviour of the system using just
pressure, velocity, and temperature are macroscopic.

* Of course, we could model all gasses and fluids at the microscopic level.



Lattice Gas Models

e Cellular automata are used to model
molecular systems.

* The use of cellular automata to model
particles such as gasses, fluids, and

* The propagation of subatomic
particles was pioneered by Stanislaw
Ulam and John von Neumann in the
1950s.

Stanislaw Ulam with the FERMIAC, used to model
neutron transport, Los Alamos National Labs

MCNP SOFTWARE QUALITY: THEN AND NOW Gregg C. Giesler,
Los Alamos National Laboratory LA-UR-00-2532; 16 October 2000
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(a) initial lattice (b) propagation (¢) collision handling

Copyright © 2001. Soil Science Society. Published in Soil Sci. Soc. Am. J.65:1577-1584.



Immune System Signaling (abridged)

Macrophage

____________________________________________

| Macrophage encounters |
' an invader '




Immune System Signaling (abridged)

_______________________________________

. Macrophage destroys |
. the invader



Immune System Signaling (abridged)

_____________________________________________

. Macrophage displays
. proteins from the invader |

_____________________________________________



Immune System Signaling (abridged)

we Care agbout this...

. T-Cell are activated by
the macrophage if their |
. receptors match the

. displayed proteins



Immune System Signaling (abridged)

...ahd we Ccare about this

B-Cells confirm that the proteins
. are from a pathogen encountered '
. previously. |



Immune System Signaling (abridged)

. B-Cells change state :
. and emit antibodies that .r
' bind to the invader ’



Immune System Signaling (abridged)

. Macrophages are recruited g e
' to the antibodies g
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Macrophage +
Macrophage
Macrophage *
* Macrophage
- ‘




Immune System Signaling (abridged)

———————————————————————————————————————————————

' Recruited macrophages |
. destroy the invaders and Macrophage Rie
display their proteins. § -|-(

x Macrophage [

) S

' The cycle repeats and
' the immune response
. increases exponentially. :




In vivo, T cells are stimulated by monovalent binding to ligands

______________________________________________

. Receptors that match
- particular protein snippets —
. are displayed by T-cells. '

Foreign protein snippets are
. displayed by macrophage



In vivo, T cells are stimulated by monovalent binding to ligands
on “antigen presenting cells” (e.g. Macrophages and B-Cells)

___________________________________________________

. The macrophage comes into
. contact with various T-cells. |



In vivo, T cells are stimulated by monovalent binding to ligands
on “antigen presenting cells” (e.g. Macrophages and B-Cells)

___________________________________________

. If the T-cell receptors match
. the protein snippet held by
. the ligands then they bind...

_________________________________________________________

.. and the ligands cluster together
and the receptors cluster together. : HOW .



Our hypothesis: Cross Membrane binding between ligand-receptor
pairs serves to combine the attractive forces between proteins in their
own membranes. This would allow receptor or ligand groups that by
themselves are do not cluster to “sum” the attractive forces and cluster.

Sounds simple but we can’t predict how strong the inter-membrane
force needs to be in relation to the intra-membrane forces to cause
phase separation. So model it!



—!
Our Approach

O Write a model of phase separation on a single
membrane

O Confirm that our results match those of previous
phase transition models

O Implement two copies of the single membrane model
and bring them into contact

O Add a cross-membrane binding force

O Under what circumstances do we get phase
separation?
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Metropglis MQnte Carlo

- n X ntoroidal lattice

— « Each site on the lattice can hold
a single protein

( g ~ + Ateach discrete time-step all
i proteins choose a random
direction to move

- If the energy is reduced the
motion is accepted.

- Otherwise the motion is accepted

| | | | | | : - (-AE/kT)e
O Protein ﬂ Random Direction Wlth prObabIIIty € '
- Repeat until we are confident

¢ = Favorable contact energy (in kT) that the system is in equilibrium
between neighboring proteins.



Measuring Phase Separation — Spatial

Autocorrelation

e Autocorrelation Function g(d)

- Choose a protein and count
~ the number of proteins at
- distance d (then +— 4 .)




The system probabilistically (Monte Carlo) enters a new lower energy
configuration. The probability depends on how much the energy is decreased.

P — o AE/ksT k Boltzmann Constant ~ J" Temperature

Where the energy change is given by the binding energy N, at
the proposed site, s; verses the current site s,.

AE = — 8/\'[3 T(Npp.sl _ Npp.s())


https://www.google.com/search?safe=strict&client=safari&rls=en&q=probabilistically&spell=1&sa=X&ved=0ahUKEwj_mZCP4dDbAhXD7oMKHXUkCgIQkeECCCYoAA

The system probabilistically (Monte Carlo) enters a new lower energy
configuration. The probability depends on how much the energy is decreased.

P — o AE/ksT k Boltzmann Constant ~ J" Temperature

Where the energy change is given by the binding energy N, at
the proposed site, s; verses the current site s,.

AE = — I:kB T(Npp..s‘l _ Npp..\'())

Not a dynamics model! The Monte Carlo model is sampling the space of

possible protein configurations. The sites SO and S1 could have
been chosen randomly.


https://www.google.com/search?safe=strict&client=safari&rls=en&q=probabilistically&spell=1&sa=X&ved=0ahUKEwj_mZCP4dDbAhXD7oMKHXUkCgIQkeECCCYoAA

The system probabilistically (Monte Carlo) enters a new lower energy
configuration. The probability depends on how much the energy is decreased.

P — o AE/ksT k Boltzmann Constant ~ J" Temperature

Where the energy change is given by the binding energy N, at
the proposed site, s; verses the current site s,.

AE = — ¢kp T<Npp.sl — Npp.s())

Not a dynamics model! The Monte Carlo model is sampling the space of

possible protein configurations. The sites SO and S1 could have
been chosen randomly.

P,'_/'
P/'_,'

— exp[ — AEj;/kg T] Microstate reversibility: Metropolis rule.


https://www.google.com/search?safe=strict&client=safari&rls=en&q=probabilistically&spell=1&sa=X&ved=0ahUKEwj_mZCP4dDbAhXD7oMKHXUkCgIQkeECCCYoAA

Predictions from Theory

The protein autocorrelation will scale with binding energy as:




Predictions from Theory

The protein autocorrelation will scale with binding energy as:

l

{)C _ ;)

foc

Time spent proteins spend bound (p) vs unbound (u):

— l —¢ o o c is the concentration of proteins.
()

- -



Predictions from Theory

The effective interprotein interaction is:

ety +2¢et, (1 —c)e ™ + 2c
beff — ——— = . &
ty + £ (1 —c)e & +c




Correlation Functions for Three Values of €

g(d)

250

200

150

100

50

|

____________________________________________

proteins are randomly
dlstrlbuted (€ subcritical) !

____________________________________________

————————————————————————————————————————————————

protems are highly
correlated (¢ supercrltlcal) E

_______________________________________________
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Fit Correlation Functions to an Exponential y = Ce™

(fit deteriorates as critical epsilon reached)

120 "
1 ]
% €=0.3 0 £=0.7

+ 4 + , i . L+t
51 L L L
[ | [ | I
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+
80_
m_
40_
20_
| [ I | | 0




E—E c
__________________________________________________________ -+
> 7 This successful fit confirms that ++T
. our model matches previous
3.0 | | work on phase separation

Length constant

0.80 0.85 0.90 0.95
Epsilon

*
Gould H., and J. Tobochnik An Introduction to Computer Simulation Methods: Applications to Physical Systems, 1996




Two Membrane Model

i'

vy
—~
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Density variance as a measure of phase separation

Calculating the autocorrelation, exponents, and critical exponents is too slow
Instead: calculate the protein density for all overlapping 3x3 squares on the lattice

Standard deviation is a measure of phase separation

@

()

e :: R

Low o, one phase High o, two phase
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Contour Plot of Phase Separation

Intramembrane €

09

)
i

)
|

)
i

)
i

0 2 4 6 8 10 12 14 16
Cross membrane €

Complete phase
separation occurs at
0.27

Random protein
distributions have
been observed to have

values of between
0.09 and 0.105
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Binding Energy (kT) A
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Fig. 2. Fraction of proteins in clusters (dimers or higher aggregates), as a
function of protein density, for various attractive interaction energies. The
clustered fraction was fit to a background level of statistical aggregation, plus a
mass action term (a dimerization equilibrium). The dimerization constant K is
plotted in the inset versus the binding energy, and shows the expected
exponential dependence. Exact correspondence is not expected, because higher
order aggregation is possible. Data from 100 x 100 lattice run for 10,000

iterations.
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Protein Density

Fig. 3. Fraction of proteins in intermembrane dimers as a function of protein
density in both membranes. At zero interaction energy, the fraction of dimers is
the same as the protein density, as expected for random associations. The dimer
concentration can be well fit by the sum of the background association, plus a
mass action term. The dimerization constant for the mass action term is well fit
to an exponential in binding energy, inset.
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Fig. 4. (a) left: 100 x 100 double lattice at step 6500 with a protein concentration of 0.05 on each lattice. Intra-lattice protein interaction energy is 0.6 kg7 and the
intermembrane interaction energy is zero. At this interaction energy, large clusters are never observed. (b) right: The same lattice configuration as in (a) but with an
added intermembrane interaction energy of 5.0 kg7. Note the formation of large clusters as a consequence of the added intermembrane interaction.



Fig. 5. The reciprocal of the mean number of clusters (per membrane) in the
two-membrane model, as a function of the intra- and intermembrane protein
interaction energies. Each of the two 100 x 100 square lattices hosted 500
proteins, a density of 0.05. (Bottom) a 3D plot; (Top) same data, viewed from
above. Color coding helps to identify the range of parameters that give strong
clustering: blue and purple colors correspond to fewer than 2 clusters per
membrane in the ensemble. The model was run for 15,000 iterations. To reduce
the statistical variation, / /N was averaged over 5 runs.
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Fig. 6. The strengths of the intra-(¢) and intermembrane (&,) protein interaction
energies (in kgT) required to give an effective interprotein interaction of 2 kg7,
according to a simple “mean field” estimate. 2 kg7 is the threshold for receptor
aggregation at this concentration (5%). The line should be compared with the
boundary between aggregated (blue) and dispersed (red) protein phases in Fig.
5, Top.



RuleBuilder Layout

i aYaXa) Rule Builder 1.40 Beta - gsg_example

File Edit View Help
-|mjelin 9]¢ A/ ¥ |» o (@& | Toolbar

000 Drawing Board O O O Molecule Templates Palette .

Tolo[o)===+=u

+ = Defined objects, such as

Molecule Templates,
. . Species, and Reaction
The I?rawmg Board is where Rules are displayed in
containers, components,
edges and operators can be

ua >e

000 Seed L-

separate windows.
placed in order to create the
molecules, species, reaction
rules, observables, and
patterns that form a
BioNetGen model.

Object Manipulation Mode

Reaction Rules




Adding Containers and Components

"o00 Rule Builder 1.40 Beta - gsg_example

File Edit View Help

SJdEEEE]ES 8 EA Y [edfeqbad PACY NIy

00 6

c

Drawing Board

Add Container
Mode.

O O O Molecule Templates Palette

A component is added by

entering “Add Components”
mode on the toolbar and S _
left-clicking in the Drawing S
Board.

Object Manipulation Mode




Renaming Components and
Containers

’6 06 Rule Builder 1.40 Beta - gsg_example

File Edit View Help
ololo]&]==lF=u) & Dl 2| ¢ Qi ¥ B 6 o2

066 Drawing Board

%
A
%
7

map
>--o

V-
[O=-

Components and Containers
\ can be renamed by left-clicking
their label. Only alphanumeric

characters and the underscore
are allowed in labels.

Object Manipulation Mode




Resizing Containers

—6 ©6 Rule Builder 1.40 Beta - gsg_example
File Edit View Help
mPFEEEEENEEONRER EE REALE

066 Drawing Board

A

O
O

Containers can be resized
by dragging the “resize

handles” that appear when U
they are selected.

Selected Containers
always appear blue.

Object Manipulation Mode




Creating Molecule Types

Molecules used in a model have to be defined and registered as a

“Molecule Type” before they can be used in reaction rules and
species.

Rule Builder 1.40 Beta - gsg_example

BRG] NNRLD

Drawing Board

|File Edit View Help

| BEEEEEEET

T

I
[O=-

To define a molecule type,
Rename add the desired components
Delete .

Create Molecule Type to the molecule, then right
Read MDL click (ctrl-click on Mac) on

Make into Species .
the container and select

—

Create Molecule Type.

Object Manipulation Mode




Setting Allowed Component States

Components may take on different states to indicate
conformation or covalent modification, such as phosphorylation.

| Rule Builder 1.40 Beta - gsg_example
File Edit View Help

EEeREEEEFEmDENE e FIREEE

“-Allowed States for b

: 'V.O—n\“.‘ \|‘
B )

Selecting Create Molecule
Default: Type brings up the

Add Allowed State Component State dialog.
Add an allowed state by
typing in the Add Allowed
State box and clicking Add.
Components don’t need to
have any allowed states.
Exit the dialog by clicking
Done.

( Add w tiRemoveix ‘ Done r

Object Manipulation Mode




ldentifying Valid and Invalid

®06

Molecules

Rule Builder 1.40 Beta - gsg_example

File Edit View Help

[2] oo E[=(E=0

1| &ra

I
O=-

Molecule Types appear here

2lef ) %[ 6w

Drawing Board

) O O Molecule Templates Palette

o )
| 8 |
o /
B

Containers matching
valid types are green.

Containers not
matching a valid type

are red.

Dashed line indicates
an incomplete match.

Object Manipulation Mode

Seed Species




Copying Objects with the Selection
Box

Draw a box around objects on the
Drawing Board to select them.
Partially enclosed objects are not
selected.

RuleBuilder 1.45 Betd
File Edit View Help

DEICEEEE
066

Object Manipulation Mode




Copying Objects with the Selection
Box

: RuleBuilder 1.45 Beta - gsg_example
iE"e Edit View Help

%

Q=] %] o|m|s)

Clicking and dragging the
selection box moves everything
selected; holding down the shift
key while dragging copies the
selection to a new location.

Object Manipulation Mode




Creating a Reaction Rule

Reaction rules are created by arranging containers and operators to construct a
formula for the reaction.

| Rule Builder 1.40 Beta - gsg_example
| File Edit View Help

[Elolol: === U Emel 5lcaamEix/s/aas)

NO6

Drawing Board

O O O Molecule Templates Palette
o o The arrow operator 5
k" /@ ° @ | separates reactants and u
A B

products.

The ‘+’ operator separates

reactants or products in a
list.

Seed Species 1

Object Manipulation Mode




Creating a Reaction Rule

The type of arrow determines
whether a reaction is
reversible or irreversible.

| Rule Builder 1.40 Beta - gsg_example
File Edit View Help

-
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Clolo=[EElE mjelio]e/ax= %8 [ma

006 Drawing Board O O O Molecule Templates Palette
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Defining Products

006 RuleBuilder 1.45 Beta - gsg_example

File Edit View Help
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066 Drawing Board
OHONGIE

b b
A B A B

Use Add Edges to create a
bond between the
components

Rlo[olx ===l
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Defining Products

OO0 RuleBuilder 1.45 Beta - gsg_example

File Edit View Help
Do EEEENERENELDEE S RELE

066 Drawing Board

(2)+ (2~
B A

A

Create the bond by clicking
on the two components to be
linked.

dd Edge Mode




Creating the Rule

e 06 RuleBuilder 1.45 Beta - gsg_example

File Edit View Help
Rolol==*=u HLEE e RREALE

V-
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0066 Drawing Board
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i b b
‘A B A B
_____________________________________________________________________________________________________________ Actions
. Make Species
Draw a selection box Make Observable

enclosing the rule, right-click
(ctrl-click on Mac), and select
Make Rule.

If Make Rule is grayed out,
make sure all of the objects
are valid and the box is
enclosing all of the elements.

Object Manipulation Mode




Make Rule Dialog

OO0 O RuleBuilder 1.45 Beta - gsg_example
i File Edit View Help

V-
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066 RuleName—| Drawing Board

Label: Rulel

o L romard e 5 Set Rule Name, rate
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.................................... ;BNGLAnnotati;; annOtatlon In the dIaIOg bOX.
For a parameter being used

( Done ) ( Cancel ) for the first time, set a

numerical value in the Rate
box.
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Reaction Rules Window

e YaYa) RuleBuilder 1.45 Beta - gsg_example

File Edit View Help
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0606 Reaction Rules

Rule now appears in the
Reaction Rules Window.




Defining Seed Species

The network is defined by applying the reaction rules to a set of seed species.

006 RuleBuilder 1.45 Beta - gsg_example
File Edit View ﬂelp
Folols S=E=

O Molecule Templates Palette

(o)

=

Make Rule a0
vidke Ruie O

N

Make Observable

Seed Species

Draw a selection box around a

connected set of molecules and right-
click (ctrl-click on Mac) to define a
species.

All items in selection box should have
solid green lines, indicating the the
molecules are fully defined.

Object Manipulation M




Species Dialog Box

RuleBuilder 1.45 Beta - gsg_example

{File Edit View Help
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species.
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Seed Species Window
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Defining Observables

Observables are concentration sums over species with particular properties and
correspond to model outputs, such as total phosphorylation of a protein.

‘®©06 RuleBuilder 1.50 Beta - gsg_example
File Edit View Help
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Make Species
Make Observable

Draw a selection box around the
pattern defining the Observable, right
click (ctrl-click on Mac) and select
Make Observable.

If this option is not available, make
sure that all molecules in the
observable are defined.




Make Observables Dialog

RuleBuilder 1.50 Beta - gsg_example
File Edit View Help

DeCE e P CRE et FEEE
Name:
N 06
- e (moecies 1) | Set Rule Name and Type.
O )
il % ;\‘ b/
o) N
Type Molecules weights the Type Species gives unit weight to the
concentration of each matching species concentration of each matching species.
YIS LTI 2EF @F Wi thg eEilnse Use this type to get the concentration of
pattern matches the species. )
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Use this for quantities like total
phosphorylation of a site on a protein or
total number of receptors in aggregates.
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Observables Window
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If the Observables Window is
not visible, Select Observables
Palette from the View menu.
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Observables Window
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Running the Model

Once Reaction Rules, Seed Species, and Observables (optional) have been
defined, the model can be simulated by pressing Run BioNetGen button.
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BioNetGen Engine Settings
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( Save ) ( Cancel )

Use the Browse buttons to set paths for the
BioNetGen Engine and the Work file.

These settings can also be changed by selecting
Settings under the File menu.
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The SimConfig Panel

This panel can also be accessed on the tool bar.
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The SimConfig Panel
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The SimConfig Panel
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The Log Window

Running the simulation brings
up the BioNetGen Output Log | s .40 sets - g xampe

or Log Window [ =i FINEEE
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Time course of concentrations written to file /Users/faeder/shared/Projects/BioNetGen_develop /temp.cdat.
Propagation took 0.00 CPU seconds
Program times: 0.01 CPU s 0.00 clock s
Updating species concentrations from /Users/faeder/shared/Projects/BioNetGen_develop/temp.cdat
Object MajCPU TIME: simulate_ode 0.0 s.
Finished processing file /Users/faeder/shared/Projects/BioNetGen_develop/temp.bngl 4

CPU TIME: total 0.3 s. v




Plotting the Results

Once the simulation
1 is finished, selecting RuleBuilder 1.40 Beta - gsg_example
' the Plot Results =

4 button brings up a |£@ e
plotting window for “Observables |-Species:
the simulation results.
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Plotting the Results
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Plotting the Results

A plot of the
defined
observable. , : ,

Concentration Plot
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The Needle in a Haystack

Lymph nodes have a volume 106 times that of T
cells.

100k T cells and 100k DCs. Small set of these are
congnate.

T cells move at an average speed of of 0.11 um/s.

T cells searching systematically (raster scan) would
discover an antigen target in 6 days on average.

Simple random walkers (Brownian) have an
expected 30% success rate after 3 days.[1]

T cells are able to find cognate antigen in 3-8
hours and give up after 12-24 hours.

<-- DCs in green, T cells in red

[1] Preston, S. P., et al. "T-cell motility in the early stages of the immune response modeled as a random walk amongst targets.”

Physical Review E 74.1 (2006): 011910.
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Background: Intensive vs Extensive Search

* We can describe any stochastic search
pattern with distributions of vector lengths
and turning angles.

* Intensive searchers have lower
displacement but search more thoroughly.

* Simple random search (Brownian motion)
will eventually cover the entire area.
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e Extensive searchers cover more ground but
leave gaps.

 Mean Squared Displacement (MSD) is a
measure of search extent




Two-photon microscopy »

131 ex vivo observations “l ® o ‘
25,000 T cells tracked »| . e |
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Building a statistical model of T cell Search




Displacement: Distance 3500 " "
travelled from starting '7
position. 0 S I

Simple random walk
Would have a log
transformed MSD
with slope & =1

and H = 2.

1 lrllll
&

We see a slope of o =1.41
Superdiffusion.

log MSD (um?
D’S

Fractal dimension = | .41 1 02 7o

(This is our measure of 101 |Og tlme (S) 103

the intensity-extent trade-off) 10



Modelling T cell Search: Fit Step Lengths |

Observed Smm—

Power Law — —

Maxwell —

DF(Step Length)

Maximume-likelihood fitting [1]

Power Law Maxwell

‘ Extensive Intensiv%

[1] Clauset, Aaron "Power-law distributions in empirical data." SIAM ( )
review (2009) Step Length !"'“m
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Modelling T cell Search: Fit Step Lengths |

Observed

Power Law — —

Maxwell —

Lognormal — -~

DF(Step Length)

Power Law Lognormal Maxwell

‘ Extensive Intensiv%

Fricke, G. Matthew, et al. "Persistence and adaptation in immunity: T cells balance the Step Length (Mm)

extent and thoroughness of search." PLoS computational biology 12.3 (2016): e1004818.
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T cell Search in the Lung

T e
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movement is somewhat | K e
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lymph nodes. ; | | |
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Paulus Mrass et al., "ROCK regulates the intermittent mode of interstitial T cell migration in inflamed lungs,” Nature Communications, 2017



Modelling T cell Search: Angle Correlation (Search in Lungs and T cells look similar)
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Measure of correlation with previous direction. Correlated random walk?



Comparison of search efficiency with empirical observations
Intense search is better

Extensive search is better
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Why don’t T cells use the parameters that result in the most unique
contacts?



Why don’t T cells use the parameters that result in the most unique
contacts?

T cells have to revisit antigen multiple times for ligand
and receptor rafts to form and signal to be properly integrated. [1,2]

[1] Fricke and Thomas, BioPhysical Chemistry (2006)



Why don’t T cells use the parameters that result in the most unique
contacts?

T cells have to revisit antigen multiple times for ligand
and receptor rafts to form and signal to be properly integrated. [1,2]

As rarity (expected distance between targets and searcher)
increases extensive search does better [3].

Intensive search does better when cognate antigen is common. T cells

are able to take advantage of both.

1] Fricke and Thomas, BioPhysical Chemistry (2006)
2] Celli, S. et al. Immunity, (2007)
3] Zhao, K., et al. Journal of The Royal Society Interface (2015)
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Tecells

In other work: Beyond Random Walks

Fibroblastic Reticulum Cells (FRC)

There are theories that depend

on T cell associations with FRC s | | |
Network and HEVs [1,2,3] :

o

V)

o
T
!

No signs of chemical attraction

|
1
1
1
0.2 1 —
1
Between T cells and DCs contrary ; —
| |
to [4] . 0.15 : 1 N
1
[1] Novkovic, Mario, et al. "Topological small-world organization of the
fibroblastic reticular cell network determines lymph node functionality." PLoS
biology 14.7 (2016): e1002515. 0.1 .
[2] Textor, Johannes, Judith N. Mandl, and Rob J. de Boer. "The reticular cell I
RN

network: a robust backbone for immune responses." PLoS biology 14.10

(2016): €2000827.
[3] Girard, Jean-Philippe, Christine Moussion, and Reinhold Forster. "HEVs,
lymphatics and homeostatic immune cell trafficking in lymph nodes." Nature

Relative Mutual Information

Reviews Immunology 12.11 (2012): 762-773. —_— ——
[4] Riggs, Thomas, et al. "A comparison of random vs. chemotaxis-driven ok |

contacts of T cells with dendritic cells during repertoire scanning." Journal of D C FRC I I 1
theoretical biology250.4 (2008): 732-751. J
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T cell Search Summary

* T cells are superdiffusive when searching lymph nodes
and lung tissue, helping to explain their efficiency.

* The search pattern in lymph nodes allows for signal
integration (less important in lungs).

* Associated with the FRC small world network which
may also increase efficiency.

 Little spatial correlation with DCs which argues against
DC recruitment.



