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The organization of interactions in complex systems can be described by networks connecting
different units. These graphs are useful representations of the local and global complexity of the
underlying systems. The origin of their topological structure can be diverse, resulting from different
mechanisms including multiplicative processes and optimization. In spatial networks or in graphs
where cost constraints are at work, as it occurs in a plethora of situations from power grids to the
wiring of neurons in the brain, optimization plays an important part in shaping their organization. In
this paper we study network designs resulting from a Pareto optimization process, where different
simultaneous constraints are the targets of selection. We analyze three variations on a problem
finding phase transitions of different kinds. Distinct phases are associated to different arrangements
of the connections; but the need of drastic topological changes does not determine the presence,
nor the nature of the phase transitions encountered. Instead, the functions under optimization do
play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic
properties of a system alone, but from the interplay of that system with its external constraints.

PACS numbers: 64.60.aq, 64.60.Bd, 64.60.-i, 87.55.de

I. INTRODUCTION

Optimization is a key goal in engineered systems and is
traditionally assumed to be part of the intrinsic dynamics
of natural evolving systems [1]. The engineering perspec-
tive, associated to man-made objects and structures, is
specially obvious when dealing with large-scale, intercon-
nected units, as it occurs in very large integrated circuit
design [2–4] or spatially-extended infrastructures such as
power grids [5? –7] and transportation or distribution
networks [6–12]. In these cases, engineers cope with in-
terfering constraints related to materials, space, packing,
wiring, or dissipation costs. The staggering complexity
of these designed systems can be addressed by algorithms
that deal with multidimensional problems.

In biological systems, important network topologies
have been shown to result from optimality [13, 14]. These
include transportation networks in living organisms [15–
19] where optimization is reached by means of fractal
trees that guarantee a low cost and efficient location of
resources. Similarly, neural circuits display optimal fea-
tures over a wide range of scales [4, 20–24]. The packing
and interconnectivity in some cortical areas seem com-
patible with design principles shared by high-density elec-
tronic designs [4].

In all the previous examples tradeoffs between effi-
ciency and cost are present. Packing many components
in a given spatial domain is desirable because of cost
minimization of connections, but dissipation of energy or
wiring constraints will also be at work. What kinds of
topologies result when considering multiple constraints?
This problem has been addressed by explicitly introduc-
ing efficiency measures E (such as average path length)
along with cost constraints C (such as number of connec-
tions of a given graph) [25–27]. A similar example in an-
other field models languages as a network of associations

between objects and words, and considers language evo-
lution through a least effort process [28–30]. Here, the
cost-efficiency conflict is mapped onto coding/decoding
efforts for users of an economic (while ambiguous) lan-
guage. Both in the linguistic and the network examples,
the tension between opposite demands leads to phase
transition phenomena. We can wonder, in a more gen-
eral note, when and how will phase transitions arise dis-
regarding of the details of the problem in hand.

Within the context of network optimization, we con-
sider the set Γ of all connected networks γ ∈ Γ involving
N nodes and any number of links. Latter on we will de-
fine an efficiency (E(γ)) and a cost (C(γ)) based on the
structure of each network γ, so that a series of optimiza-
tion problems can be posed. For each such graph, we can
also introduce a global energy function Ω(γ) that takes
into account our optimization goals. The most straight-
forward way to do this is through a linear combination:

Ω(γ, λ) = λE(γ) + (1− λ)C(γ), (1)

with λ ∈ [0, 1] a tunable parameter that weights the im-
pact of each contribution. This is precisely the strategy
in previous accounts of these problems [25–31]. If λ = 1
only efficiency constraints will be at work, whereas λ = 0
would ignore this component.

Such a global energy function results in very illustra-
tive visualizations of the optimization process through
the notion of a potential landscape. Assuming minimiza-
tion, more optimal network architectures lay deeper in a
potential well when we plot Ω(γ, λ) for every γ superim-
posed on an arbitrary network morphospace, as in Fig.
1(a). Note, however, that this is a limited picture: a fixed
value of λ is necessary to generate one potential land-
scape. Changing the parameter modifies the landscape
rendered by Ω(γ, λ) and, accordingly, the underlaying op-
timization problem. To achieve a more general compre-
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hension we should not only allow scenarios with different
values of λ, but we must also question the hypothesis of
linearity introduced by equation (1). Therefore, we con-
sider Pareto (or Multi Objective) Optimization [32–34],
whose solution is not a global optimizer dependent on
external parameters (i.e. the absolute minimum of some
potential landscape), but a collection of solutions that
attempt to satisfy both (cost and efficiency) constraints
simultaneously. These Pareto optimal designs constitute
the so-called Pareto front: the most optimal tradeoff pos-
sible between the targets involved (Fig. 1(c)).

In this paper we look at such tradeoffs for a series of
optimization problems defined upon complex networks.
How the different constraints are satisfied depending on
a series of factors is interesting in itself; but if we re-
late the Pareto optimal designs to the linear optimiza-
tion problem posed by equation (1), a richer phenomenol-
ogy unfolds. This stems from a deep connection between
the Pareto front and phase transitions and other impor-
tant features of thermodynamic theory [35]. In this con-
text, the energy landscapes that we can generate through
equation (1) often result very useful to complete the pic-
ture.

The paper is organized as follows. Sec. II provides the
basic formalism of Pareto optimization and the connec-
tion between Pareto optimality and statistical mechanics
[35]. This theory homes in phase transitions for the prob-
lems investigated and is the framework used to analyze
most of the results obtained. Also in Sec. II we pose
a series of Multi Objective Optimizations upon complex
networks whose solutions are detailed in Sec. III and
discussed, with closing remarks, in Sec. IV. Appendix A
explains some numerical aspects of the current work.

II. PHASE TRANSITIONS IN THE PARETO
FORMALISM

A recent contribution proposed a multiobjective opti-
mization approach to statistical mechanics that gener-
alizes key concepts in thermodynamics for any Pareto
optimality problem [35]. The fundamental connection is
between the Pareto front and the Gibbs surface. This
surface (defined through the thermodynamic potential
G = G(U, S, V )) is linked to the equilibrium state of a
thermodynamic species. Then, its concavities and non-
differentiable edges underly the existence of first and sec-
ond order phase transitions [36, 37].

A similar point can be made for systems that opti-
mize a set Tf of target functions Tf = {t1, ..., tK}, whose
Pareto front encodes phase transitions and critical points
in its shape. This connection between Pareto optimal
systems and thermodynamics is explained at length in
[35]. There, general Pareto optimal designs (not nec-
essarily networks) that minimize an arbitrary number
K ≥ 2 of targets is discussed. Here we sketch the theory
with just K = 2 optimization targets and using con-
nected networks with fixed number of nodes (γ ∈ Γ).

FIG. 1: A two dimensional example of Pareto opti-
mality. (a) γ ∈ Γ are all possible connected networks
with a given number of nodes. They populate some network
morphospace where we seek those graphs minimizing some
measurable feature. If we deal with just one fitness function,
an energy landscape can be defined and the optima are easily
found at the bottom of energy wells. (b) If more than one op-
timization target are at play, this landscape picture falls apart
and we need to adopt a Pareto optimization approach. Then
our task is to find a set of Pareto optimal solutions (ΠΓ ⊂ Γ)
that minimizes all targets (here t1 and t2) simultaneously.
These functions map each network γ ∈ Γ into R2. The subset
of Pareto optimal solutions is mapped into the Pareto front
(thick gray curve). Along this curve it is not possible to im-
prove both t1 and t2 at the same time. (c) It is convenient
to introduce Pareto dominance. The black circle represents a
net with lower t1 and t2 than (thus it Pareto dominates) those
within the gray square. That same filled circle is dominated
by those networks projected between the dashed lines and the
Pareto front. (d) Recovering a single objective optimization
through a linear combination of the targets (Eq. (1)) is akin
to choosing a direction in R2 and seeking the extreme of the
front along that direction.

This suffices to illustrate the relevant aspects of the theo-
retical framework. We remit the reader to [35] for further
details.

Henceforth, Tf = {t1, t2} are any two real valued func-
tions that we can measure on any network. These func-
tions project each network into Tf (γ) = (t1(γ), t2(γ)), a
point in the plane that we term target space (Fig. 1(a)-
(b)). In that plane we can solve the Multi Objective
Optimization (MOO) problem consisting of the simulta-
neous minimization of both targets. Therefore we define
Pareto dominance (Fig. 1(c)): A network γx ∈ Γ domi-
nates another γy ∈ Γ (and we note it γx ≺ γy) if

tk(γx) ≤ tk(γy) ∀ k = 1, 2;

∃ k′ ∈ {1, 2} | tk′(γx) < tk′(γy). (2)

In this case γx is objectively better than γy and we can
dismiss the later. It is often the case that pairs of net-
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works are mutually non dominated. Then we cannot
choose between them without introducing a bias towards
either t1 or t2. We have to avoid this bias to find Pareto
optimal designs. We say that a network γx ∈ Γ is Pareto
optimal if it does not exist any other γy ∈ Γ such that
γy ≺ γx. Hence

ΠΓ = {γx ∈ Γ | @ γy ∈ Γ, γy ≺ γx} (3)

is the set of all Pareto optimal solutions, which consti-
tutes the solution of the MOO problem.

The set ΠΓ ⊂ Γ is projected onto the target plane
through Tf (ΠΓ) where it represents a limiting frontier of
the whole Tf (Γ), known as the Pareto front. For K = 2
this frontier is a curve that implements a bijective func-
tion of t1 and t2 (Fig. 1(c)). ΠΓ is not a standard global
optimizer. Instead, it comprises a collection of valid net-
works that embody the optimal tradeoff between many
targets such that, as we move through it, we cannot im-
prove t1 without worsening t2 and vice-versa.

We can now add a further demand that a global energy
function

Ω(γ;λ) = λt1(γ) + (1− λ)t2(γ) (4)

be minimized. (This equation is equivalent to Eq. 1 with
the more general t1,2(γ) instead of efficiency and cost.
We rewrite it here for convenience.) Note that this is the
simplest Single Objective Optimization (SOO) that we
can built with Tf . Indeed, each possible λ ∈ [0, 1] poses a
different SOO problem, potentially with a distinct global
solution. We check now how solutions of this SOO family
are related.

By setting fix a value of λ we choose a direction in
the t1 − t2 plane along which the minimization proceeds
(Fig. 1(d)). From Eq. 4, networks projected onto a
straight line with slope d = −λ/(1 − λ) have the same
global energy Ω. Networks on straight lines pushed fur-
ther against the front present lower energies, until one
solution γλ ∈ ΠΓ is singled out as global minimum of
Ω(λ). It usually lays where the slope of the front is pre-
cisely d = −λ/(1 − λ). If the front ΠΓ is convex and its
derivatives are well defined, we can smoothly sample the
front by slowly tuning λ. Any appropriate measurement
that we perform on γλ will be a smooth, differentiable
function of λ itself.

If a cavity exists in Tf (ΠΓ), the global solutions bypass
those that lay inside (Fig. 2(a)). For a certain value
λc, two very different solutions (γ1

λc and γ2
λc) located far

apart in the t1 − t2 plane are simultaneously optimal.
Solutions between γ1

λc and γ2
λc (inside the cavity) never

get to be global optima. For λ < λc we remain at one side
of the cavity where a smooth sample of the Pareto front is
still possible. The same happens for λ > λc at the other
side of the cavity. But at the characteristic value λc there
is a sudden jump between γ1

λc and γ2
λc and, consequently,

in any order parameter that we can measure on γλ when
plotted as a function of λ (Fig. 2(b)). This is a first
order phase transition. A similar transition happens if

FIG. 2: Phase transitions in Pareto optimal systems.
(a) A first order phase transition takes place in MOOs whose
Pareto front presents a cavity. Solutions of the convex hull
of the front are SOO global optima for a range of λ, while
those inside the cavity are not. (b) This renders a gap in
any adequate, measurable property of the global solutions.
(c) Second order phase transition are associated to ill-defined
derivatives – i.e. sharp edges in the front. Those designs at
the edge are persistently optimal foe a range of the control
parameter λ. (d) Hence, any property of the global solution is
constant as a function of that same control parameter for the
designated interval. (e) Second order phase transitions might
also take place at the extremes of the Pareto front. We say
then that the front has an abrupt ending (or that it ends in
an abrupt manner) as in the lower-right extreme of this front.
(f) Any order parameter presents the well-known functional
dependence of second order phase transitions.

the Pareto front is a straight line (then λc = −dc/(1−λc),
where dc is the slope of the front) with the singularity
that all Pareto optimal solutions are also global optima
for λ = λc.

If the front is convex but its slope is ill-defined any-
where (Fig. 2(c)) there is a range of values λ ∈ (λ−, λ+)
for which the global optimum remains the same. Because
the optimum does not change within this singular range,
if we plot any order parameter its derivative (with respect
to λ) will be zero. The same derivative will be different
from zero anywhere else. This results in a characteristic
plot for any order parameter (Fig. 2(d)) associated to
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second order phase transitions.
Such non-differentiability of the front might be shifted

all the way towards one of its extremes. For λ ∈ (0, 1)
we seek global optima where the slope of the front is
any −λ/(1 − λ) ⇒ d ∈ (−∞, 0). Well-behaved Pareto
fronts should roll smoothly with slopes that completely
span the d ∈ (−∞, 0) interval; otherwise the front will be
exhausted while more SOO problems can still be defined.
If these slope values are not exhausted we say that the
Pareto front ends in an abrupt manner, meaning that its
slope as we approach its leftmost end is some d∗− > −∞,
or its slope as we approach its rightmost end is some other
d∗+ < 0. These abrupt endings of the front will be optima
already for some λ∗ = −d∗±/(1− d∗±). We can still define
SOO problems for λ beyond these limits, for which the
solutions at the corresponding extremes of the front will
be persistently optimal (Fig. 2(e)). This implies again
a discontinuity in the derivative of any order parameter,
the fingerprint of second order transitions (Fig. 2(f)).

A. Multiobjective optimization of complex
networks

Complex graphs are a great testbed to illustrate this
theoretical framework. They allow us to define prob-
lems of increasing difficulty where first and second order
transitions arise. Seminal work on network optimiza-
tion addressed the problem from an SOO perspective
[11, 25, 26, 31, 38], so some of our results can be put
in context. Another advantage of complex networks is
that good optimizers can be produced in the computer,
simplifying the empirical work.

We propose three problems based on the conflict be-
tween the average path length between nodes and the
density of edges, which roughly inform us about diffu-
sion efficiency [39] (for which low average path length
is desired) and implementation costs (lower for sparser
networks). Consider first the topological (or standard)
average path length:

〈l〉t (γ) =
1

Zt〈l〉

∑
i,j

dtij(γ)

2
, (5)

where dtij(γ) denotes the distance (in number of edges)
between nodes ni, nj ∈ γ along the shortest path that
connects them; and the topological (or standard) link
density:

ρt(γ) =
1

Ztρ

∑
i,j

aij(γ)

2
, (6)

where the adjacency matrix A(γ) = {aij(γ)} presents
aij(γ) = 1 if two nodes are linked in γ and aij(γ) =
0 otherwise. Zt〈l〉 and Ztρ are normalization constants

discussed below.
The superindices in 〈l〉t (γ), ρt(γ) indicate that we deal

with the topological (or standard) average path length

and link density, in which edges cost 1 unit. Geometric
costs can be included if nodes are distributed, e.g., over
a Euclidean space. Let dgij(γ) be the Euclidean length
of the shortest path connecting ni and nj in network γ
– i.e. the sum of the Euclidean lengths of the edges in
the shortest path between these nodes provided that γ
is embedded in some geometric space. We introduce the
geometric (or weighted) average path length:

〈l〉g (γ) =
1

Zg〈l〉

∑
i,j

dgij(γ)

2
. (7)

The shortest Euclidean distance possible between two
nodes lij(γ) only enters equation (7) if a direct link be-
tween ni and nj is present in γ (in that case dgij(γ) =

lij(γ)). This lij(γ) allows us to introduce the geometric
(or weighted) link density:

ρg(γ) =
1

Zgρ

∑
i,j

aij(γ)lij(γ)

2
. (8)

Just as before, 〈l〉g (γ) and ρg(γ) (note the su-
perindexes indicating their geometric dependence) are
normalized by Zg〈l〉 and Zgρ . A clique, or fully connected

network (γC), has the shortest average path length
possible always. As we will see later, this means that γC
is Pareto optimal always, so we base our normalization

on it: Z
t/g
〈l〉 =

∑
i,j d

g(i, j; γC)/2, Ztρ =
∑
i,j aij(γC)/2,

and Zgρ =
∑
i,j aij(γC)l(i, j; γC)/2.

We combine 〈l〉t/g (γ) and ρt/g(γ) as targets in different
ways to generate three MOO problems:

(A) Fully topological problem, with t1 = 〈l〉t (γ) and
t2 = ρt(γ). Note that the geometry does not play
any role in this case.

This version was originally studied in [25, 26] from
an SOO perspective. From that approach, only the
clique and star graphs appear relevant (as discussed
in [26]) as the representatives of two phases at ei-
ther side of a discontinuous phase transition. We
show how this fits parsimoniously within the frame-
work presented in [35]. But besides, we discuss
now the whole Pareto front – its relevant shape and
some of its constituents. This front includes non-
trivial complexities well differentiated from the star
and clique, and it presents connections to critical
systems discussed elsewhere [40].

(B) Partly geometrical problem, with t1 = 〈l〉t (γ) (the
same as above) and t2 = ρg(γ). Geometry, through
t2, plays a relevant role now. Since the disposition
of the nodes in space matters, we study this MOO
in two different cases: i) nodes scattered randomly
over the [0, 1] × [0, 1] square in R2 and ii) nodes
spaced evenly over a circle of radius 1.

In this problem we still use the topological average
path length, meaning that we seek to minimize the
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number of hops or the number of relay stations be-
tween arbitrary pairs of nodes. To think about this
problem we can picture an infrastructure such as a
subway network whose contractor wishes to mini-
mize the length of line built while the users want
to avoid transfers between lines.

(C) Fully geometrical problem, with t2 = 〈l〉g (γ) and
t2 = ρg(γ). In this case the geometrical cost is
important for all targets involved. Again, the dis-
position of the nodes matters and again we study:
i) nodes scattered randomly over the [0, 1] × [0, 1]
square in R2 and ii) nodes spaced evenly over a
circle of radius 1.

III. RESULTS

Three relevant topologies indicate major feats of all
our Pareto fronts. The most prominent one is the clique:
a fully connected network that presents the largest num-
ber of links possible, thus maximizes edge density and
minimizes the average path length always. This guaran-
tees that the clique is always Pareto optimal. It marks
the top-left boundary of the Pareto front, as illustrated
in Fig. 3(a). This is true for all problems considered in
this paper.

The star presents a hub to which all other nodes are
connected, while non-hubs are not connected to each
other. There are N possible star graphs. If geometry
is not considered, all of them are equivalent. When ge-
ometry intervenes and nodes are spaced over a circle all
N stars are equivalent as well. All possible trees consist
of as many edges as the star but, if geometry matters,
only the minimum spanning tree (MST) minimizes al-
ways the edge density (t2). The MST is Pareto optimal
whenever geometry is relevant and it always indicates
the end of the Pareto front opposite to the clique (at its
bottom-right).

A. Fully topological problem

This case has been studied as an SOO through equa-
tion (4) [25, 26]. That solution is incomplete from an
MOO perspective which was not the chosen paradigm in
those works anyway. This problem has the advantage
that its front (Fig. 3(a)) can be found analytically and
the phase transitions derived from it are independent of
the number of nodes. We cannot guarantee the same for
the variations studied later.

Because we normalized both targets using the clique
as a reference, this network is mapped into (1, 1) in the
t1 − t2 plane. Any graph will have less edges than a
clique, thus the set Γ of all connected networks lays be-
low t2 = 1 in the target plane. The lower boundary
of t2 is achieved by connected networks with the min-
imum amount of edges possible (N − 1). There are

FIG. 3: Pareto front of the fully topological problem.
(a) The front (solid gray curve) is a straight line connect-
ing two phases: a star and a clique. The slope of the line
dc = −1 determines that at λc = 1/2 a first order phase
transition takes place. All networks laying on the front are
global SOO optima at that critical value. Among them we
find networks produced by attaching links to a star and oth-
ers radically different from the star and from the clique (note
the two graphs marked A and B: only one of them can be
produced by attaching edges to the star). (b) All core graphs
for have been listed for N ≤ 5. Beyond that, it becomes in-
creasingly difficult to count how many there are or even to
tell apart two different ones.

a collection of such graphs, from the star to a linear
chain – in between lay all possible trees. All them have
t2 = ρt = 1/N , which tends to 0 as N goes to infinity.
The average path length of these networks varies between
that of the star (2(N − 1)/N → 2) and the linear chain
((N2−1)/3(N −1)→ +∞). These minimally connected
graphs lay on a horizontal stretch of the t1 − t2 plane
(dashed line in Fig. 3(a)).

Among these trees (all with the same t2 = 1/N), the
star is the one with the lowest average path length, hence
it is Pareto optimal. Any other network with a lower t1
must have more links than the star, the clique setting
the lower t2 bound. Thus the Pareto front must lay on a
curve connecting the clique and the star – i.e. connecting
(1, 1) and (2, 0) in the t1 − t2 plane.

We appreciate the following facts: i) The edge density
is a function of the number of links alone and it does
not depend on the topology of the network. ii) Given a
network that is Pareto optimal, we generate new Pareto
optimal networks by simply adding new connections. As
an instance, the star is Pareto optimal and all its nodes
are 1 edge apart from the hub and 2 edges apart from
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FIG. 4: Partly geometrical problem on nodes scattered over a plane. (a) The front follows the archetype of the
topological problem with two roughly perpendicular stretches that trade off between the clique (top-left), the star, and the MST
(bottom-right). Incomplete cliques are reached after a second order phase transition because the Pareto front ends abruptly in
its top-left (inset). The other extreme of the front ends smoothly. (b) A sharp edge indicates a second order phase transition
with the star graph being optimal for a range λ ∈ (λ−, λ+). (c) Plotting an order parameter as a function of λ reveals both
transitions at λ ' 0.61 and at λ− ' 0.01 and λ+ ' 0.3 (inset). The star is optimal in the range λ ∈ (λ−, λ+), thus any order
parameter is constant in that range. (d) The non-analyticity of the Pareto front is inherited by the energetic landscape also
as a sharp edge. The SOO is vividly illustrated thanks to this potential landscape, whose minimum is occupied by one same
network for several values of λ. As lambda changes, the potential well is deformed until the minimum drifts away from the
sharp edge.

each other. Then, new edges can only be added that
connect directly two non-hub nodes, turning a distance
dt(i, j) = 2 into dt(i, j) = 1; but not affecting the network
in any other respect. Put otherwise, once a network is
Pareto optimal any addition of links has got only local
effects in its average path length.

Adding new links to the star results in more Pareto op-
timal networks, the number of which grows combinato-
rially (that scaling saturates as we approach the clique).
Take apart the N − 1 non-hub nodes of a star: any net-
work that we implement on this subset of nodes (con-
nected or not), and which is subsequently embedded on
the original star graph through the hub, is Pareto opti-
mal. It is a sufficient (but not necessary) condition for

a network to be Pareto optimal to contain a hub (Fig.
3(a)). The necessary condition for Pareto optimality is
that every node is at maximum 2 edges apart from each
other.

From any Pareto optimal network (with or without a
hub), adding new edges always generates new Pareto op-
timal graphs. Repeating this operation we always reach a
clique, but this process is not reversible: Take the clique
and delete connections randomly with the condition that
your network remains Pareto optimal after every dele-
tion. No rearrangement of the edges is allowed. Let this
process continue until we cannot remove any link with-
out violating the Pareto-optimality condition. This algo-
rithm might yield a star or any other graph from a col-
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lection of irreducible Pareto optimal networks, which we
call Pareto core graphs. The star is the core graph with
less edges possible. We can only construct these networks
as described, since other defining regularities are not ap-
parent – beyond the optimality condition that every node
is at most 2 hops away from each other. Some of these
graphs are represented in Fig. 3(b) for N = 2, . . . , 7.
The complexity scales from 1 core graph for N = 2, 3;
to two core graphs for N = 4; to three for N = 5; to
an unknown number for N ≥ 6. For larger N it also
becomes increasingly difficult to determine whether two
core graphs are the same, given their invariance under the
labeling of the nodes. Note that core graphs are Pareto
optimal. They are representative of the staggering com-
plexity contained in the front (which grows combinato-
rially) and they cannot be trivially composed as a mix-
ture of stars and cliques. Because of this they constitute
Pareto and global optima that have not been previously
reported.

Even if we cannot list down all Pareto optimal net-
works, we can find where they live on the t1 − t2 plane.
Adding one edge always modifies 〈l〉t (γ) by an amount

∆ 〈l〉t = −1/N(N − 1), thus t1 is decreased. The same
operation increases t2 by ∆ρt = 1/N(N − 1). Because
∆ρt/∆ 〈l〉 = −1 does not depend on the number of
edges, Pareto optimal graphs thus generated lay on a
straight line with slope dc ≡ ∆ρt/∆ 〈l〉 (Fig. 3(a)).
Such a front implies a first order phase transition at
λc = −dc/(1 − dc) = 1/2. The clique and the star are
found at either phase (correspondingly for λ > λc and
λ < λc). Right at the critical value λc any Pareto opti-
mal network is a global optimum. The degenerated com-
plexity at λ = λc, with so many and structurally different
optimal solutions, presents interesting connections with
critical phenomena and neutral theory that we explore
in future work [40]. The plot of any order parameter as
a function of λ (not shown) just presents a gap between
two constant values.

B. Partly geometrical problem

Figure 3(a) provides an archetype for the Pareto front
that will be repeated (with variations) in the more elab-
orated MOO problems. Our fronts will present a first,
stepped stretch that trades off between the clique (top-
left) and some intermediate networks (usually the star);
and a second, flat stretch with little variation in the ver-
tical dimension (t2) and a broad variation in the hori-
zontal axis (t1). In the previous case, this second stretch
(dashed line in Fig. 3(a)) does not belong to the front,
but it will in the following problems.

1. Nodes scattered over a plane

Figure 4(a) shows the first example of this archetype.
A very stepped stretch of the front trades off between

the clique and the star just as before. However, this is
a convex curve now, which we discuss below. The sec-
ond archetypal stretch of the front trades off between the
star and the MST, and is mapped onto an almost hori-
zontal curve in the t1 − t2 plane with a slight convexity.
This Pareto front ends up smoothly in its bottom-right
extreme, so we dismiss any phenomenon associated to
it. Because the whole front is convex first order phase
transitions are ruled out.

The first, stepped stretch of the front (Fig. 4(a), inset)
presents a feature that appears in most subsequent cases.
This stretch is a convex curve that ends abruptly (with
the notion of abruptness introduced before). This indi-
cates that a second order phase transition takes place.
This transition trades off between the clique (persistent
global optimum for λ > λ∗ ' 0.61) and dense but incom-
plete graphs reached as we move below λ∗. Because the
clique is optimal for λ ≥ λ∗, anything that we measure on
this global optimum stays constant as a function of λ un-
til λ < λ∗, for which our wandering over the Pareto front
yields a changing global optimum as λ decreases. Then,
any measurement performed on the SOO optimum will
vary steadily with a derivative (with respect to λ) differ-
ent from 0. This discontinuity in the derivative indicates
that a second order phase transition takes place (Fig.
4(c)).

A sharp edge in the front (Fig. 4(b)) indicates yet
another second order phase transition similar to that de-
scribed in Fig. 2(b): The slope of the front is well defined
as we tend towards the sharp edge from the left (yielding
a slope d+ such that λ+ = −d+/(1− d+) ' 0.3), and as
we tend to the sharp edge from the right (now with d−

such that λ− = 0.01). For any λ ∈ (λ−, λ+), SOOs are
well defined through equation (4); but there are not any
points of the front with a slope −λ/(1−λ) = d ∈ (d+, d−)
where to locate the optimum. Instead, the same one net-
work laying precisely at the sharp edge is consistently
optimal for this range of λ. Anything that we measure
about this optimum will remain as a function of λ in
(λ−, λ+), but samplings of the front run smoothly below
λ− and above λ+, with well defined derivatives for any
order parameter as a function of λ. Hence, two disconti-
nuities are evident in this derivative (Fig. 4(c), inset).

Qualitatively, browsing the front through λ is a con-
tinuous transition from the clique (which is a global op-
tima for a wide range of λ), through the star graph
(also a persistent optimum for a continuum of λ), to the
MST. The weighted density of edges (t1 = ρg) penalizes
large connections first, which are dropped as we leave
the clique. But enough of them survive among Pareto
optimal graphs so that the star can be reached continu-
ously, without needing a drastic rewiring that would leave
an imprint in the order parameters. Note that these few
long edges survive because they enable a low average path
length (t2 = 〈l〉t), which is still measured as the number
of hops between nodes. Finally, to rearrange the star into
the MST, the surviving long edges are replaced by wind-
ing branches that extend visiting many nodes on their
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FIG. 5: Partly geometrical problem on a circle. (a) Again, the front follows the archetype of the topological problem
with two roughly perpendicular stretches that trade off between the clique (top-left), star networks, and the MST. Around the
clique it is observed the same phase transition as before. In the cavity it is solved a complex rearrangement. Networks that
drop their larger connections first (A) must morph into a star (B), which requires some of these far-reaching edges. Therefore,
some Pareto optimal networks are produced that never get to be SOO optima (C), yielding a first order transition. (c) Order
parameters as a function of λ reveal the first (λc ' 0.34, magnified in the inset) and second (λ∗ ' 0.59) order transitions. (d)
The landscape potential unveils the mechanisms for local equilibrium and hysteresis associated to first order transitions. At
low levels of the control parameter (λ ∼ 0.1) only one minimum exists in the global energy Ω. A pocket becomes locally stable
for λ ∼ 0.2. This grows for larger λ, until it becomes the global extreme of the energetic landscape (λ ∼ 0.4). Optimizing our
networks through numerical algorithms can get us stuck in local minimums, so to transit from one potential well to the other
we need to increase our control parameter until one of the wells get destabilized (λ ∼ 0.57). Repeating the operation with
decreasing λ can get us stuck in the other well, thus engaging in a hysteresis loop. Some Pareto optimal networks inside the
cavity are reached at these metastable states.

way. Alternative strategies, like hybrid MSTs that incor-
porate non-essential shortcuts between far-apart nodes,
fall off the Pareto front (note the sub-optimal graph high-
lighted in Fig. 4(a)).

It is very useful to consider the potential landscape in-
troduced by equation (4) to stretch our intuition. For
a fixed value of λ we compute the energy Ω(γ, λ) for
every Pareto optimal network. The result is a lower en-
ergy boundary (Fig. 4(d)). Not Pareto-optimal networks

must present yet higher energies. The SOO solution be-
comes now very intuitive since the global optimum lays
at the minimum of Ω(γ, λ), which has got a vivid graphic
representation. But this potential landscape changes as a
function of λ, and consequently its minimum. The sharp
edge of the Pareto front is inherited by the potential land-
scape, which presents a persistent minimum for a range
of the control parameter.
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2. Nodes spaced over a circle

The front of this problem (Fig. 5(a)-(b)) again fol-
lows the archetype: i) a stepped stretch to the left that
trades-off between the clique and dense (yet incomplete)
graphs and ii) a flatter stretch that encompasses graphs
with roughly the same edge density but a wide variation
along the average path length dimension. This second
stretch extends to large values of t1: a region populated
by minimal, circlelike networks with little long-range con-
nections. It seems a convex stretch that ends smoothly,
so nothing remarkable happens there. Again, the stepped
stretch of the front is convex (Fig. 5(a), inset) and ends
abruptly revealing a second order phase transition. It is
similar to the one encountered before by the clique and
happens at a similar value λ ' 0.59 (Fig. 5 (c)).

The notable feature that this front introduces is a
concavity at the junction between the two archetypal
stretches of the front (Fig. 4(b)). The cavity lays at the
confluence between the three relevant network topolo-
gies: incomplete cliques, the star, and encircled nets (the
MST of the problem). As in the previous case, longer
edges are dropped first. The scattered nodes managed to
retain enough long-range links in that example, enabling
a continuous transition through the star. This is not
possible now, and the symmetry of the circle might be
crucial therefore. Earlier, the distribution of lengths were
varied, while now all long-range edges are the same: the
moment one is dropped, the others follow. As we leave
the clique, we converge quickly to encircled graphs with
little long range connections; and these lay inside a cavity
of the front (Fig. 4(b)). To reconstruct a star (which re-
mains Pareto optimal due to its low average path length)
a drastic rewiring in unavoidable. This prompts a first
order phase transition (λc ' 0.34) whose imprint is, in-
deed, that cavity. That transition is reflected in any order
parameter θ that we plot as a function of λ (Fig. 4(c),
inset).

We can resort again to a potential landscape to vi-
sualize this transition. Plotting Ω(γ, λ) for all Pareto
optimal networks we obtain the lower energy boundaries
portrayed in Fig. 5(d). This landscape changes as λ
varies, producing two potential wells associated to local
minimums. At λ = λc, both minimums present the same
energy, thus both phases coexist. Moving away from the
transition point, one of the wells is unstabilized. Note
that moving λ back and forth could get us temporarily
trapped in metastable states (the most energetic local
minimum) and hysteresis loops would be observed.

C. Fully geometric problem

Introducing geometry in both target functions has the
effect of smoothing the Pareto front, removing first order
phase transitions. Some relevant second order transitions
disappear. Others persist, but only at the extremes of the
front. The picture becomes closer to a soft trading-off

between the clique and the MST.

1. Nodes scattered over a plane

FIG. 6: Fully geometrical problem for nodes scattered
over a plane. (a) The front has no accidents. It is
completely convex and spans all possible slopes so that each
λ ∈ (0, 1) poses an SOO with a different solution. As we roll
over the front, the clique gently leads to less connected net-
works, towards the MST. (b) The absence of phase transitions
renders smooth plots of any order parameters.

This problem presents a quite uninteresting front (Fig.
6(a)) without phase transitions. The front spans all pos-
sible slopes d ∈ (−∞, 0), so that SOOs with different
solutions can be posed for each λ ∈ (0, 1). Any order pa-
rameter renders a continuous plot (Fig. 6(b)) even when
zooming in to tiny details (inset). The first derivative of
the order parameters also behaves properly.

All phase transitions from previous cases have van-
ished. Besides the geometric disposition of the nodes
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(which has some obvious influence over what transitions
are present), it is notable that choices of optimization tar-
gets exist for which previously existing transitions disap-
pear. The fact that, given a same set of networks γ ∈ Γ, a
choice of targets erases previous transitions implies that
a gentle evolution between radically different topologies
(clique and MST) can happen, despite the drastic mod-
ifications that we might envision necessary a priori, and
despite the phase transitions that do take place on the
same graphs for other choices of targets. This stresses
the role of target functions to frame phase transitions
properly.

2. Nodes spaced over a circle

Again, introducing geometry in both targets smooths
the Pareto front (Fig. 7(a)). The first order transition
found in the circle before has disappeared. There is no
cavity now and the tradeoff between clique and circle
happens gradually as we roll over the front. That previ-
ous transition took place because the gradual drift from
clique to circle was interrupted by the presence of the
Pareto optimal star, which kept the average path length
low because it was measured as the number of hops be-
tween nodes. But now geometry also enters through
t1 = 〈l〉g (γ) and using only two links to get from one
node to another is still costly if these are far reaching
connections. It is more economic now to circle around
even if that implies visiting many more nodes. Thus the
star is retracted from the Pareto front and the transition
from the clique to the MST proceeds smoothly.

The bottom stretch of the front seems convex but
abruptly terminated, suggesting a second order transi-
tion at λ∗1 ' 0.28 that trades off between the MST (an
almost complete circle, which is persistently optimal for
λ ≤ λ∗1) and other, more connected graphs. The char-
acteristic plot of a second order transition is noted in
any order parameter (Fig. 7(b)). At the other end of
the front we find the usual transition associated to the
clique, which did not disappear but has been moved to
λ∗2 ' 0.98. The same characteristic order parameter plot
can be appreciated (Fig. 7(b), inset). For λ ∈ (λ∗1, λ

∗
2)

any order parameter is a smooth function of λ.

IV. CONCLUSIONS

In this paper we solve three MOOs defined on complex
networks. These problems allow us to explore interesting
aspects of Pareto optimality. Following recent contribu-
tions in biology [41, 42], our work is an exploration of a
morphospace. A first approach to such spaces is to list
all possible morphologies for a system and locate them
quantitatively with respect to some relevant aspects –
here, complex networks are characterized in an average-
path-length vs. edge-density two-dimensional space. We
propose that a natural selection process based on Pareto

FIG. 7: Fully geometrical problem on a circle. (a) The
front presents a smooth transition between the clique and the
open circle, with no relevant feats except in the extremes of
the front. These end up abruptly, as in second order phase
transitions. (b) Plotting any order parameters reveals these
phase transitions at λ∗

1 ' 0.28 and λ∗
2 ' 0.98 (inset).

optimality shall constrain further such a morphospace
and we study the effects of these conflictive restrictions.
In doing so, we follow recent works [43–46] that illustrate
how Pareto optimality reduces the effective dimensional-
ity of certain complex systems.

Alternatively, a recent theoretical framework brings to-
gether statistical mechanics and MOO [35], thus enrich-
ing the analysis of Pareto optimal designs. This frame-
work reveals universal features of Pareto optimal systems
that correspond to phase transitions or critical phenom-
ena.

First order phase transitions indicate that a system
must undergo important structural changes despite little
variation of some control parameter. In thermodynam-
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ics, this implies great investments of energy in reshaping
matter, e.g., as it transits from solid to fluid. Similar
demands might be requested of complex Pareto optimal
systems, specially if the parameters controlling the con-
ditions for optimality may change over time. This un-
derscores the importance of gathering knowledge about
the Pareto front before implementing solutions to any
optimization problem.

Second order phase transitions can also be very infor-
mative about the nature of a system. They indicate that
some solution is stable for a large range of the control pa-
rameters, thus making it more likely if evolution or design
has taken place under many different scenarios. On the
other hand, if such stable solutions would not show up
in an evolutionary setup, we would have strong evidence
that a large set of possible circumstances do not occur
naturally.

We have found a variety of first and second order tran-
sitions. These depend very much on the precise mathe-
matical expression of the optimization targets (see, for
example, how transitions disappear as we change the
measure of average path length). Hence, looking at the
problem from an alternative perspective, the presence
or absence of expected phase transitions in real systems
could be informative about the nature of the optimiza-
tion pressures that these systems might be subjected to.

Finally, the fully topological problem presents a quite
singular case: a first order phase transition takes place
between the star graph (for λ < λc) and the clique
(λ > λc), while all other Pareto optimal networks are
also global optima at λ = λc. This would suggest that
cliques and star graphs should happen overwhelmingly
more often than any other topology when geometry is not
relevant, unless every optimal network had evolved under
the unlikely condition λ = λc. This is notably at odds
with the reality and a possible solution (with connections
to critical phenomena) will be explored elsewhere [40].
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Appendix A: Analytic and numeric approaches for
MOO solving

We relied on genetic algorithms to locate the different
Pareto fronts. The fully topological case can be solved
analytically, but the same genetic algorithm was used to
check for good convergence showing very good results. In
this appendix we explain in detail the genetic algorithm.
Following that explanation, a few disclaimers are in or-
der about the numerical nature of the solutions found –
i.e. about the fact that convergence to the Pareto front

cannot be guaranteed and the smoothing necessary to
render a continuous approximation to the front.

1. A multiobjective genetic algorithm

MOO relays on the concept of Pareto dominance.
Given two networks γi, γj ∈ Γ, both mapped into R2

through t1(γi/j) and t2(γi/j), we say that γi dominates
γj (and note it γi ≺ γj) if γi is not worst than γj re-
garding any target and it is better than γj with respect
to at least one target. We can visualize this: Since we
deal with minimizations in the t1 − t2 plane, network
γi has got a set of axes associated with their origin at
(t1(γi), t2(γi)) and every network γj laying on the first
quadrant of these axes is Pareto dominated by γi.

Following the literature on multiobjective genetic al-
gorithms [47–49] we computed a dominance score: We
took the set Dj ≡ {γi|γi ≺ γj} of solutions from within a
given population (an arbitrary subset of Γ) that dominate
γj . The size of this set (dj = ||Dj ||, dubbed the dom-
inance score), indicates how fit γj is in terms of Pareto
optimality. We proceeded then to minimize this score.
We departed from an initial population of NP networks
(either random or designed, see below), selected NP /2 of
the population based on the dominance score, chose ran-
dom pairs among the selected networks to produce NP /2
new networks, and applied random mutations to all but a
subset of elite networks. We iterated this scheme a fixed
number of generations.

Mutations consisted in random appending or deleting
edges or totally swapping the connections of two arbi-
trary nodes. For crossover, from each of the two mating
nets we assigned each node and its connections randomly
to each of the offspring graphs checking that the same
node and connection was not assigned twice to the same
child. After crossover or edge deletion we checked that all
networks remained connected all the time. We completed
one missing link whenever connectedness failed and then
checked for connectedness again.

All we care about for the current research is good
convergence towards the front. This justifies our using
of crossover: this is a very good evolutionary operator,
though unrealistic if we wanted to study some features
of nature. For example, such an operator would not be
adequate to study species that do not reproduce sexu-
ally. Studying Pareto optimality under constrained con-
ditions – e.g. without crossover – also renders a set of
non-dominated solutions. These might converge to the
Pareto front or not, and they might be subjected to ge-
ometrical constraints in t1 − t2 that are similar to those
studied in [35] and in this paper for Pareto optimal net-
works. Such constrained evolutionary schemes pose inter-
esting research questions, but here we are concerned with
Pareto optimal solutions. This justifies the crossover and
a clever initialization of the algorithm. It might be diffi-
cult to converge towards some solutions that are highly
non-trivial – e.g. the MST. We know, though, that this
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solution belongs to the front of all physically grounded
problems. If an algorithm would fail in finding this so-
lution, this could hinder convergence towards an inter-
esting (though challenging) region of the Pareto front.
Once again, because we are concerned with Pareto op-
timal solutions and would like to attain the closest con-
vergence possible, it is also fully justified to seed the ini-
tial population with a few designed solutions. We did
so by introducing since the very beginning cliques, star-
graphs, MSTs, and circle networks (these two are equiv-
alent for the circle) with very slight mutations. We pro-
duced NP /4 of each such major topologies at the begin-
ning. The crossover and mutation operators ensure fast
exploration of hybrid topologies.

As noted above, we know that some of these networks
are Pareto optimal: the clique is always so, and the MST
is Pareto optimal in all physically grounded problems.
However, and since we started with little variations upon
these graphs, the algorithm did not always reach these
solutions – but it surely explored the region nearby.
There might be other interesting regions of the front
that might not have been fully explored and that are
impossible to seed without foreknowledge. Although we
are concerned with Pareto optimal solutions alone, our
methods are numerical at the end and convergence of
multiobjective genetic algorithms to the Pareto front
cannot be guaranteed. We decided to report on the
results of the simulations with as little reinterpretation
and further speculation as possible. Notwithstanding,
the overall details of the Pareto front seem to be recov-
ered and the theory posed in [35] is properly illustrated.

As for the implementation of the algorithm, we used
a population of NP = 3000 connected networks with
N = 50 nodes – with the initial population seeded as
indicated above. The population was evolved during
T = 10000 generations in every case. Mutation hap-
pened with a probability pµ = 0.001 of appending an ex-
tra link to each network, the same probability of deleting
an existing edge, and the same probability of swapping
the ends of each existing connection. The top Ne = 50
networks of the population where considered elite and
were spared any mutation. As the algorithm proceeds,
many networks reach a dominance score of 0 even if they
are not Pareto optimal. Unluckily, this score is the best
indicator of Pareto optimality available (not only in the
current implementation, but generally). This results in
elite members of the population not being objectively
better than non-elite members – in terms of Pareto opti-
mality. Because the algorithm sorted the population con-
sistently from one generation to the next, what members
of the population are considered elite is largely a matter
of antiquity: early members that reach low dominance
score and are not overthrown are likely to be preserved
during the whole simulation. We repeated 4 times the
simulations with scattered nodes to check that the rele-
vant features obtained were not artifacts of some lucky
distributions of the nodes.
2. Smoothing of the front and order parameters

The only speculation that we allowed ourselves is in
choosing a relevant scale for analysis, which led to a

smoothing of the Pareto front. As noted in Sec. III,
we deal with a discrete set of networks whose front is
necessarily discrete as well. Accordingly, every shift in
global optima is a first order phase transition at some
scale and global optima remain so for a continuous range
of λ, as in second order phase transitions. This does
not further our understanding of the problem as much as
a coarse-grained analysis that renders noteworthy phase
transitions. Since the genetic algorithm only produces
a finite set of (ideally) Pareto optimal solutions, we ap-
plied a Bezier smoothing to their plot on the t1−t2 plane.
We took care that the smoothing did not introduce alien
concavities. Because Bezier curves cannot present sharp
edges (thus ruling out second order phase transitions),
when a sharp edge seemed the best description of the
front (Sec. III B, partly geometrical problem on nodes
scattered over a plane), we decided to split the front in its
two salient branches and apply two independent smooth-
ing processes that allowed us to recover the transition in
great detail.

To locate global optima, we calculated Ω(xΠ, λ) for
the optimal solutions produced by the genetic algorithm,
and for a large sample of points from the Bezier curves
introduced in the previous paragraph. We registered
the global optimal for different values of λ. One of
the problems pointed at earlier is that, because of the
discreteness of the front, global optima are so for several
values of λ. This would cause that the plots of order
parameters look tiered. For a better illustration of
the results, whenever order parameters are plotted we
indicate only the first and last values of λ for which
each global optima are indeed optima (black crosses
in all order parameter plots). The smoothing allows a
finner grained sampling so that this is not an issue: the
corresponding order parameters (red curves in all order
parameter plots) look continuous always.

Following [35], anything well behaved that we measure
upon global optima are accepted as order parameters. By
well behaved we imply that order parameters should not
introduce alien divergences into the problem, and that
solutions laying at different points over the front should
score differently in this parameter. This way we ensure
that any feature stemming from the optimization prob-
lem does not go unreported and that we do not introduce
phase-transition–like behaviors that originated, e.g., on
some function diverging to infinity for reasons of its own.
Taking these guidelines into account, the target functions
themselves are always good order parameters. We use
these (θ = t1 in Sec. III C), or trivial transformations of
them (θ = 1 − t2 in Sec. III B). More drastic transfor-
mations such as 1/(2 − t1) would be banned: note that
this function diverges for t1 = 2 even if this is a perfectly
regular point of the front for all problems.
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