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COMPUTATIONAL CHAOS - A PRELUDE TO COMPUTATIONAL INSTABILITY

Edward N. LORENZ

Center for Meteorology and Physical Oceanography, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 16 June 1988
Communicated by R.M. Westervelt

Chaotic behavior sometimes occurs when difference equations used as approximations to ordinary differential equations
are solved numerically with an excessively large time increment 7. In two simple examples we find that, as 7 increases, chaos
first sets in when an attractor 4 acquires two distinct points that map to the same point. This happens when A4 acquires slopes
of the same sign, in a rectifying coordinate system, at two consecutive intersections with the critical curve. Chaotic and
quasi-periodic behavior may then alternate within a range of 7 before computational instability finally prevails. Bifurcations to
and from chaos and transitions to computational instability are highly scheme-dependent, even among differencing schemes of
the same order. Systems exhibiting computational chaos can serve as illustrative examples in more general studies of

noninvertible mappings.

1. Introduction

Typical systems of nonlinear ordinary differen-
tial equations possess general time-dependent so-
lutions that are not readily expressible in terms of
familiar functions. Particular solutions are most
often sought by numerical means. Solutions of the
vector system

dX/dt=F(X) (1)

may be approximated by using Euler’s forward-
differencing scheme, i.e., by choosing a time incre-
ment t and iterating the system of difference
equations

Xn+l=Xn+TF(Xn)’ (2)

or, more commonly, by using some higher-order
or more elaborate scheme.

Anyone who has devoted much time to solving
nonlinear differential equations numerically has
almost surely encountered computational instabil-
ity —a rapid and unbounded amplification of the

variables that can occur when 7 is too large.
Computational instability can often be cured sim-
ply by making 7 smaller, without otherwise
altering the procedure, although in some non-dis-
sipative systems —for example, in eq. (1) when
X - F vanishes identically - a blow-up may eventu-
ally occur no matter how small  has been made,
if a conventional differencing scheme is used with-
out modification [1].

Even when r is small enough to ensure compu-
tational stability, a simple mapping such as (2)
may not be a good approximation to the flow (1)
on which it is based. This is, after all, why more
elaborate schemes such as higher-order Runge-
Kutta schemes have been developed. The disagree-
ment need not be merely quantitative. Solutions
that ought to be attracted to stable fixed points,
and will be if 7 is small enough, may, with a larger
7, approach limit cycles, while solutions that ought
to approach limit cycles, as well as those that
should approach fixed points, may vary chaoti-.
cally. We shall refer to chaotic behavior that owes
its existence to the use of an excessively large time
increment as computational chaos.
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For definiteness we shall use the term chaos to
mean the presence, at least throughout a basin of
attraction, of sensitive dependence on initial con-
ditions. A prominent consequence of sensitive de-
pendence is that almost all points in the relevant
basins lie on aperiodic orbits. This usage, which
has become fairly common, seems to have evolved
from the use of “chaos” by Li and Yorke [2] to
denote the presence of some aperiodic orbits, even
when almost all points lie on periodic orbits.

It should not surprise us that computational
chaos is widespread, since it appears even when
eq. (1) is one of the simplest imaginable nonlinear
flows — the single equation

dx/dt=x—x? , (3)

in the single scalar dependent variable x. Eq. (3)
possesses the general solution x =e’/(e’ + ¢), and
almost all particular solutions approach either
— oo or the stable fixed point x =1. If we apply
the Euler scheme (2), we obtain

X1 = (14 7)x,—7x, (4)

a form of the logistic equation whose properties
have been recounted many times [3, 4]. Solutions
with 0 <x,<(1+17)/7 correctly approach the
fixed point x =1 if 7 <2, but, as 7 increases from
2 to 3, the general solution first undergoes period
doubling and then enters a range of chaotic
behavior, generously interspersed with periodic
windows. As r passes 3, true computational
instability sets in.

Nevertheless, neither computational instability
nor computational chaos is inevitable. For exam-
ple, when the Euler scheme is applied to the scalar
equation

dx/dt= —x/(1+ x?), (5)

chaos sets in at the culmination of a period-dou-
bling sequence, when 7=15.309, but computa-
tional instability never develops. We shall presently
encounter a simple example where computationai

instability sets in as soon as the fixed points
become unstable, with no intervening chaotic be-
havior.

Descriptions of particular instances of computa-
tional chaos date back at least to the pioneering
work of Stein and Ulam [3] on nonlinear transfor-
mations, performed soon after digital computers
had become powerful enough to permit one to
make a large number of runs, each consisting of
thousands or perhaps hundreds of thousands of
iterations. Their approach is indirect; having found
a mapping

X, 1= G(X,) (6)

that produces a chaotic attractor, they effectively
convert the chaos to computational chaos by treat-
ing the mapping as the result of applying the
Euler scheme to the flow

dX/dt=G(X) - X, (7)

with 7 =1.
It thus appears that any mapping

Xn+l=H(Xn’a) (8)

is equivalent, for a fixed value of a scalar parame-
ter a, to some mapping of the form (2), with a
fixed 7. It does not follow, however, that a se-
quence of mappings, produced by varying « in (8),
is in general equivalent to any sequence produced
by varying 7 in (2). In particular, transitions to
computational chaos are conceivably more special-
ized than transitions to chaos in general.

More recently Yamaguti and Ushiki [6] have
applied centered and mixed differencing schemes,
which express X, ; in terms of X, and X,_,, to
eq. (3), and, with the mixed scheme, have obtained
a mapping equivalent to that of Hénon [7], which
possesses a chaotic range. Whitehead and
MacDonald [8] have produced chaos by applying
the Euler differencing scheme to a two-dimen-
sional flow introduced by Burgers [9] as a model
of certain features of fluid turbulence. On the
theoretical side, Yamaguti and Matano [10] have
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shown that if the Euler scheme is applied to a
scalar equation having both stable and unstable
fixed points (as does eq. (3), for example), a suf-
ficiently large = will produce chaos in the sense of
Li and Yorke [2]. Ushiki [11] has shown that the
application of a centered differencing scheme to
eq. (3) produces chaos, in the same sense.

Aside from simply being different equations
from (1), and hence possessing different proper-
ties, eq. (2), and other approximations to (1) where
X, ., is given in terms of X, generally differ from
(1) in an important qualitative way; they are not
uniquely invertible, although they may be invert-
ible for special values of r. They may also be
invertible over certain regions, and in particular,
over an attractor. In this work we shall be con-
cerned with differencing schemes that produce
noninvertible mappings. Some schemes, including
the centered and mixed schemes used in [6], pro-
duce invertible mappings.

A sufficient condition that a noninvertible map-
ping, whether or not it is identified with a numeri-
cal integration scheme, be chaotic is that two
distinct points P and P* in an attractor 4 map to
the same point P; in 4. A non-rigorous argument
is that if R and R* are regions containing P and
P* with diameters much smaller than the distance
from P to P*, the sequence of forward images of
P, or of some point in A close to P;, must
eventually enter R and R*, and must enter one of
these regions, say R, before the other. If there is
no sensitive dependence on initial conditions, the
next image in the sequence will lie near P, and
the subsequent images will lie near the earlier
images, thus continually reentering R and avoid-
ing R*, in contradiction to the previous statement.

The proposition seems so apparent that we sus-
pect that it is well known, but we have not discov-
ered a specific reference to it. Similar reasoning
leads to the conclusion that a sufficient condition
that an invertible mapping or a flow be chaotic is
that two distinct orbits in an attractor approach
each other asymptotically.

We should add that, even for noninvertible
mappings, noninvertibility on 4 is not a necessary

condition for chaos. There are plenty of invertible
mappings, including the Hénon mapping [7], that
are chaotic. A small modification of such a map-
ping can presumably leave it invertible and chaotic
on A while rendering it noninvertible somewhere
else.

The principal purpose of this work is to
examine the progression from good to poor and
possibly chaotic approximations and then to com-
putational instability when various differencing
schemes are applied with increasingly large time
increments to simple but otherwise typical flows.
We shall be particularly concerned with the pre-
cise onset of chaos and its possible coincidence
with the acquisition, by an attractor, of two points
that map to the same point. We shall also be
concerned with the precise onset of computational
instability. A second purpose is to emphasize that
the introduction of rather large time increments
into otherwise routine numerical integrations can
offer a handy means of creating chaos, when one
is interested in chaos for its own sake. We shall
choose examples where the correct long-term be-
havior of the original flow can be ascertained
without recourse to numerical integration. We are
not aware of any comprehensive treatment of
computational chaos, nor is our account intended
to be comprehensive.

2. A system with fixed-point attractors

Some time ago we introduced the system

dX/dt= —0X+ oY, (9a)
dY/di= —XZ +pX - Y, | (9b)
dZ/dt= XY - BZ, (%)

where o, p, B are positive constants, as a highly
truncated model of fluid convection [12]. The sys-
tem has a fixed point O at the origin, which is
unstable when p > 1. In that event there are two
additional fixed points Q and Q' differing only in
the signs of X and Y; these are unstable when
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6>fB+1and p>a(c+B8+3)/(c—B—1). Or-
bits may then be chaotic, shuttling back and forth
from the vicinity of Q to that of Q' at seemingly
irregular intervals. Time series of X and Y look
much alike, but those of Z look more like those of
X? and Y2 The system has been intensively stud-
ied from the topological as well as the analytical
point of view.

For the leading example in the present study we
choose the limiting form of egs. (9) as ¢ = o0
while p and B remain fixed, i.e., we discard (9a)
and replace X by Y in (9b) and (9c). We then
note that, if 8 # 1, we can reduce 8 to 1 simply by
rescaling the variables and the remaining con-
stant; this is not true of the original equations (9).
Setting B =1, letting a = p — 1, and denoting the
dependent variables by x and y instead of Y and
Z, we obtain the system

dx/dt=ax — xy, (10a)
dy/dt= —y+ x% (10b)
We shall consider cases where a > 1/8.

Infinitesimal departures (£, ) from (x, y) are
governed by the system

$(3)-050 D6 1)

whose characteristic equation is
X+(Q-a+y)A+(2x*—a+y)=0. (12)

Introducing the values x>=a, y=a at Q or Q’
we find, since a > 1/8, that the roots of (12) are
complex, and the Lyapunov exponents /; and /,
(with [} = /,), which in this case are the real parts
of the roots, both equal —1/2.

Upon approximating eqs. (10) with the first-
order scheme (2), we obtain

Xpo1 =1 +ar)x,—1x,y,, (13a)
Yor1=1=1)y, +7x’. (13b)

Eqgs. (13) are equivalent to those studied in [8].

For a fixed value of a, we shall be interested in
three critical values of 7. These are 7,, the lower
limit of values of 7 for which Q and Q' are
unstable, r,, the lower limit of values for which
chaos is present, and 7, the lower limit of values
for which computational instability occurs.

Infinitesimal perturbations (£, n) are now gov-

erned by
¢ l+ar—7y —1x £
= ., (14)
N/ w1 21x 1—7/2\M/»

whose characteristic equation is

M—T\+A4,=0, (15)

where T, and A, are the trace and the determi-
nant of M,, the square matrix in (14). Again the

~ roots of (15) are complex when x, and y, assume

their values at Q or Q’. Since we are now dealing
with a mapping, the stability of Q and Q’ depends
upon the real parts of the logarithms of the roots.
We find that /, and /,, expressed in inverse time
units, both equal [log(1 — 7+ 2a72)])/(27), which
appropriately approaches —1/2 as 7 — 0 but van-
ishes when 7=1/(2a); thus 7, =1/(2a).

At 7=, there is a Hopf bifurcation, and, if
this is supercritical, the attractors just beyond T,
should be quasi-elliptical limit cycles. Since Q and
Q' are no longer attractors, their degree of stabil-
ity does not determine /; and /,. We can estimate
/; and /, numerically by forming the product
My _My_, --- M, for some large N and solving
the characteristic equation. If the roots are real,
the product matrix is likely to be nearly singular,
making the estimate of /, suspect, and we can
independently estimate the sum /; +/, from the
product Ay Ay _, - - A,

As for the noninvertibility, given x, ., and y,_ 1,
we find from (13) that x, satisfies

T2x3ﬁT(yn+l_Cb)x—cxn+l=O’ (16)

where b=(1+ar)/7 and ¢=1—r1. Eq. (16) has
two equal roots when (x,.,, y,.1) lies on the
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Fig. 1. The critical curve C and its image D and the other
inverse image C* of D, the y-axis Y and its inverse image Y*,
and the fixed points O, Q, and Q’, for eqgs. (13) with a=10.36
and T=1.92.

curve D (see fig. 1) given by
4r(y —cb)’ =272 (17)

Evidently D possesses a downward-pointing cusp
on the y-axis (unless 7= 1). Points above D have
three inverse images, while those below have only
one.

The double inverse image of D is the parabolic
critical curve C obtained by setting A =0, and
hence given by

c(y—b)=27x2 (18)

Points immediately above or below C (and not on
the y-axis) map to points above D, so that small
regions intersecting C are effectively folded over
on D by the mapping, and are highly compressed
in the direction normal to D. The remaining in-
verse image of D is the parabola C* given by

dc(y—b) = —1x% (19)

Only points below C* if <1, or above C* if
7> 1, map to points below D. The y-axis Y maps

onto itself; the other inverse images of the portion
of Y above D are the positive and negative halves
of the horizontal line Y* where y=5. Points
above Y* map to the opposite side of Y.

Fig. 1 shows the curves C, D, C¥*, Y, and Y*,
and also the points O, Q and Q’, when a=0.36
and 7=1.92. The picture is qualitatively similar
for other values of 7> 1. When 7 <1, the posi-
tions of C and C* are interchanged.

Given a point (x, y) above D, the remaining
points (x*, y*) having the same forward image as
(x, y) may be found by first solving the quadratic
equation

x*r+rxx*—c(y—b)=0, (20a)

obtained by dividing out the known root (x, y)
from (16), and then observing from (13b) that

c(y*—y)+r(x*?—x?)=0. (20b)

As we have noted, the system will be chaotic if
some point (x, ), and one of the corresponding
points (x*, y*) distinct from (x, y), both lie on an
attractor 4. Equivalently, if 4* is the set of points
(x*, y*) that satisfy (20) with (x, y) on A4, the
system will be chaotic if 4 and A* intersect at a
point not on C.

3. A route to chaos

It is not the main purpose of this paper to
present an exhaustive treatment of one more dy-
namical system. Nevertheless, we feel that a fairly
detailed analysis may constitute the most effective
exposition. We shall examine egs. (13) with a =
0.36. '

Fig. 2(a) shows the variations of /; and [/, with
7, up to 7, (= 2.073), where computational insta-
bility sets in, as resolved by numerical estimates at
intervals of 0.0025. In our estimates we let N =
1000 and choose distances 8, =107> and §,=
102, We start from a point near Q and perform
N iterations to reduce transient effects, ending at
(X, ¥o)- We then base our estimates on N itera-
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Fig. 2. (a) Numerically estimated values of the Lyapunov ex-
ponents /, and /I, (/,>/,) for values of = from 0 to =,
(= 2.073) at intervals of 0.0025, for egs. (13) with a = 0.36. (b)
The same as (a), except for values of r from 1.7 to 1.84 at
intervals of 0.0002.

tions from (x,, y,), with the following modifica-
tions: if 8(x,,, ¥,.; Xo, Yo) <96; for some m < N,
where § is the distance between two points, we
stop, and base our estimate on only m iterations,
assuming the solution to be periodic of period m;
if instead 8(xy, yy; X0, ¥o) > 8,, We continue un-
til 8(x,, ¥,; X0 Yo) <8, for some n > N, or until
n = 2N, and base our estimate on » iterations.

For 7 <7, (=1.389), /; and /, are negative and
equal, in agreement with the theory. Beyond 7,
there is a range where /;, = 0 and /, < 0, suggesting
a limit cycle. As 7 nears 1.8, positive values of /;
appear, implying chaos. Both the limit-cycle range
and the chaotic range possess periodic windows.
In fig. 2(b) the resolution has been increased to
0.0002 for the range 1.7 to 1.84, which includes the
critical value 7,. A periodic window of period 14
near 1.72 and one of period 9 near 1.81 stand out,
while additional narrower windows are resolved.
Chaos is prominent when 7 = 1.8, but is detectable
below 1.785.

The windows are inevitable. Assuming that
within a range of 7 there is a closed invariant
curve, which may be a limit-cycle attractor for
some values of 7, and which is continuously de-
formed as 7 varies, the mapping of this curve onto
itself will be equivalent to the much studied map
of the circle, described in textbooks [13, 14]. A
basic result is that between any two values of 7
for which the entire curve is the attractor, there
must be a periodic window of finite width. Most
of the windows are too narrow to be resolved by
computation schemes that do not deliberately seek
them. Nevertheless, there cannot be a continuum
of values of 7 with limit-cycle attractors, bounded
above by 7,. At most there may be a sequence of
such values of 7, approaching r,. We have chosen
the case a =0.36 for study partly because of the
scarcity of wide windows near 1.

Fig. 3 shows attractors A for four selected val-
ues of 7. In each case there is also a second
attractor A’ —the mirror image of the first in Y.
Each picture was produced by plotting a long
succession of points in a single numerical solution.

The first attractor is the anticipated ellipse, al-
ready somewhat distorted. The second, despite its
rough appearance, is topologically still an ellipse.
The apparent cusps are actually points of extreme
curvature. The third, although suggestive of the
second, is chaotic, and may be seen under ’magni-
fication to possess a Cantor-set structure. The
fourth is visibly chaotic, and, despite the hole
surrounding Q, appears to be fully two-dimen-
sional in the region it covers. Because fig. 3(d)
contains a finite number of points, the more fre-
quently visited portions of 4 appear more heavily
shaded. Evidently /; + [, > 0, so that the mapping
is expanding, and in fact even /,>0. It is only
because two regions can map onto the same region
that the solution can remain bounded. Superfi-
cially A resembles the projection on a plane of the
attractor of a three-variable invertible system
whose fractional dimension exceeds two.

The key to the explanation of the similarities as
well as the differences in figs. 3(b) and 3(c) lies in
fig. 3(d), where A possesses smooth boundaries
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Fig. 3. (a) The attractor A of egs. (13) with a = 0.36 and 7 = 1.50. The mirror image 4’ of 4 in the y-axis is a second attractor. The
point at (0.6, 0.36) is Q. (b) The same as (a), except that = 1.775. (c) The same as (a), except that = 1.785. (d) The same as (a),

except that 7 =1.92.

despite its chaotic interior; clearly the lower right
boundary lies on D. Assuming only that 4 occu-
pies and fills a restricted region that intersects C
but not Y*, the segment of C contained in 4 must
map onto a segment of D, while points on either
side of C will map to points above D. The remain-
ing boundary segments of 4 and the prominent
interior discontinuities in shading lie on forward
images of D. Fig. 4 shows the first five forward

images of the segment of C that extends from its
first intersection with its third image to its inter-
section with its first image; the outlines of 4 have
been aptly recaptured.

The sequence of attractors displayed in fig. 3 is
qualitatively much like one encountered by Stein
and Ulam [5] in their study of cubic transforma-
tions; their attractor with r=1 fills a two-dimen-
sional annular region. A sequence exhibited by
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Fig. 4. A superposition of the first five images of the portion
of the curve C between its first positive intersection with its
third image and its positive intersection with its first image, for
egs. (13) with a =0.36 and 7=1.92.

Beddington et al. [15], obtained from a predator—
prey model formulated as a transcendental map-
ping, resembles our sequence even more closely.
Their attractors range from quasi-ellipses to one
that fills a two-dimensional region and possesses a
smooth outer boundary, presumably composed of
segments of forward images of a critical curve.

Returning to the Hopf bifurcation at 7,, we
anticipate that the curve forming A, originally an
infinitesimal ellipse, will expand, ultimately push-
ing across C, even though the continuity of the
expansion will be broken by minuscule periodic
windows. The images of its points of intersection
with C will lie on D, while the remainder of A
will lie above D; thus 4 must possess two protu-
berances or bumps. The forward images of these
bumps must be additional bumps. As 4 continues
to expand, the bumps may become more pro-
nounced, and bumpy portions of 4 may intersect
C, giving rise to still more bumpiness.

In fig. 5(a) we have superposed segments of C
and D on the attractor of fig. 3(b), where 7 = 1.775.
One intersection with C is labeled 0, and its first
37 forward images are labeled from 1 to 37. Image
1, which must lie on D, is at the peak of a

Fig. 5. (a) An enlargement of the attractor 4 of fig. 3(b),
showing portions of the curves C and D. The numbers indicate
images of the intersection of 4 with C that is numbered 0. (b)
The attractor 4 of fig. 3(b) and the portion of the correspond-
ing set A* that intersects 4 on C.

noticeable bump, and, because the bump is close
to C, its image is compressed in the direction
normal to D and appears as an apparent cusp at
image 2. We find, in fact, that most of the 37
images correspond to the peaks of visible spikes or
bumps, while together they nearly exhaust the
visible irregularities of A. Images of the other

Rl
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intersection of 4 with C are less prominent; one
occurs at the bump between the points numbered
19 and 33.

Fig. 5(b) shows the same attractor A and the
piece of A* (see eqs. (20)) below Y*. Evidently 4*
is like a circus-mirror image of A4 in C. The only
intersections of 4 and A4* are on C, but only
minor additional distortions of 4 would be needed
to produce intersections with A* off C. To pursue
this matter it is convenient to introduce a “rectify-
ing” coordinate system (x,, y,) in which C be-
comes a straight line, and 4 and 4* become exact
mirror images in C. It suffices to let x =
(x—x*)/2 and y,=(y+y*)/2, whereupon C
becomes the y-axis. We may wish to follow this
transformation by a rotation. Fig. 6(a) shows A4,
again for T = 1.775, in rectifying coordinates, after
a rotation that makes C the x -axis. One need not
actually draw the mirror image of A4 to see that it
intersects A only on C.

If A is still quasi-elliptical when it first pushes
across C, its two intersections with C will slope in
opposite directions. A sufficient condition for 4 to
intersect A* off C is that its two intersections with
C acquire slopes of the same sign, or, if additional
crossings appear, that two consecutive crossings
have slopes of the same sign. A slight modification
of A, as 7 increases, could easily change the sign
of the left-hand slope in fig. 6(a). What actually
happens, however, is that the protuberance that is
just reaching C in fig. 6(a) (near (—0.1,0)) pushes
across C, and soon afterward the slope of its
right-hand crossing changes sign. Fig. 6(b) indi-
cates that this has already happened when 7=
1.785.

Fig. 7(a) is an enlargement, with additional
horizontal stretching, of a neighborhood of the
protuberance in fig. 6(b) (enclosed by the larger
rectangle), while fig. 8(a), which enlarges the lower
left corner of fig. 7(a), with still more horizontal
stretching, leaves no doubt that the slope at the
crossing marked 0 has changed its sign. It follows
that 4 and A4* must intersect somewhere off C;
this they do at the points labeled 00 and 000. The
forward image of the portion of 4 in fig. 7(a)

—

o

—
1

T
Jo Xy

Fig. 6. (a) The attractor 4 of eqs. (13) with a=0.36 and
T=1.775, and portions of the curves C and D, in rectifying
coordinates. (b) The same as (a), except that 7=1.785. The
small rectangles indicate the regions that have been enlarged in
fig. 7.

should then look much like fig. 7(a), but with C
replaced by D, and with the value of y, squared. It
should therefore be tangent to D at the image of
0, and should intersect itself at the common image
of 00 and 000, whence it should contain a small
loop. Fig. 7(b) shows the appropriate portion of
fig. 6(b) (enclosed by the smaller rectangle), en-
larged, rotated so as to make D quasi-horizontal,
and then stretched vertically, while fig. 8(b) en-
larges the lower left corner of fig. 7(b). The antici-
pated loop appears and is labeled 1.

Just above loop 1 there is a rather similar loop,
labeled 38. This is of course.the image of the loop
below 0 in figs. 7(a) and 8(a), labeled 37, but it
also proves to be the 37th image of loop 1, or the
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Fig. 7. (a) Enlargement of the portion of fig. 6(b) enclosed by
the larger rectangle, followed by additional horizontal stretch-
ing. The numbers indicate images of the intersection of A with
C that is numbered 0. (b) Enlargement of the portion of fig.
6(b) enclosed by the smaller rectangle, followed by rotation
through an angle tan~1(—10/9) and additional vertical
stretching. The numbers indicate images of the intersection of
A with C in fig. 7(a) numbered 0. Note that because of the
rotation the values of x, and y, differ from those in fig. 6(b).

38th image of crossing 0 —hence the label. Loops
23 and 24 also appear in figs. 8(a) and 8(b), while
other labeled loops appear in figs. 7(a) and 7(b).
We may ask, if loop 1 is the “original” loop and
the other loops are simply its images, why figs.
7(b) and &(b) do not also contain a loop 75
somewhat above loop 38. The answer is that loop
51 falls on top of C, as seen in fig. 7(a), producing
additional intersections of 4 and 4* near but not
on C. What would be loop 52 is therefore some-
thing more complicated than a loop, but it is also
so compressed in the direction normal to D that it

/2 SRR |
062:_ 75 .;
_ e
08!, N 3
[\ 24 |
E N _
C\\\A )
oo A \ ;
F N
3 \ P - ]
\ 98 e S
059F el\\ﬁ;_/// ..... 5 ]
.
.058 L« L o ) L )
\ i 18 Xr o9

Fig. 8. (a) An enlargement of the lower left portion of fig.
7(a), followed by more horizontal stretching. The points la-
beled 00 and 000 have the same forward image. (b) An enlarge-
ment of the lower left portion of fig. 7(b).

shows up in fig. 7(b) as a short antenna virtually
lying on D. We have labeled it 52, and have
labeled its forward images, which also resemble
antennae. Antenna 75 is indeed prominent in fig.
8(b), as is its 37th image, antenna 112, while in fig.
8(a) antennae 60, 97, and 134 are resolved. The
steady increase in the lengths of the antennae that
appear to emanate from the same point, as their
indices increase by 37, clearly reveals the sensitive
dependence on initial conditions, implied by the
positive value of /,, while the tendency of the
antennae to lie ever closer to the “main curve” as
they stretch out reveals that this “curve” is actu-
ally an infinite complex of curves. Note that
antenna 134 crosses C, leading to still more com-
plicated fine structure.

g
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We have thus accounted for all of the resolved
features in figs. 3(b) and 3(c) and their enlarge-
ments in terms of intersections of 4 with C. For
somewhat larger values of 7 the loops would be
larger and more easily seen, but there would also
be a greater tendency for them to overlap, thereby
confusing the analysis. We feel that by examining
the case 7= 1.785 we have virtually caught chaos
in the act of forming. Evidently 7, is slightly
below 1.785.

Catching the exact onset of chaos is more in-
volved. In the range of r where an invariant
closed curve exists, each window begins and ends
in a saddle-node bifurcation; the window of pe-
riod 14 between 1.71 and 1.73 in fig. 2(b) is a
typical example. Fig. 2(b) also shows a narrower
window of period 37, beginning near 1.777, and
ending near 1.779 in a Hopf bifurcation that pro-
duces 37 small ellipses. Clearly these ellipses can-
not all lie on a single closed curve that does not
intersect itself. Chaos therefore appears to be im-
minent. A high-resolution search reveals a still
narrower window of period 208, beginning near
1.7848 and ending near 1.7849 in a period-dou-
bling bifurcation. Again, the period doubling is
topologically inconsistent with an invariant closed
curve that passes through the 208 points before
the bifurcation, and deforms itself continuously
into a similar curve passing through the 416 points
after the bifurcation, unless the curve crosses itself
somewhere. Again chaos seems to be imminent.

We find, in fact, that in the semiperiodic band
of period 37, ie., in the range of 7 where A
consists of 37, or a multiple of 37, disjoint pieces,
with each piece mapping onto another piece, there
are values of r, in particular 1.7844, where A4
consists of 37 chaotic pieces. Likewise, in the band
of period 208 there are values of 7, in particular
1.78494, where the 208 pieces of A are chaotic.
The band of period 37 actually resembles a com-
pressed copy of the whole of fig. 2(a), and con-
tains its own semiperiodic bands and periodic
windows, some of which may end in Hopf or
period-doubling bifurcations, so that chaos may
first appear in a band within a band, or even a

band within a band within a band.... A precise
determination of 7, may therefore be impractical.

In passing we note that the band of period 37
extends beyond 1.785, so that at 1.785 there is, in
addition to the chaotic attractor of fig. 3(c), a
second attractor consisting of 407 =11 X 37
points. Points chosen randomly in the area cov-
ered by fig. 3(c) appear more likely to be attracted
to the chaotic attractor.

Similar routes to chaos, with different details,
may be expected for other values of a near 0.36.
When a > 0.5, 7, <1, and, when a is large enough,
7, <1 and 7, <1, so that C lies above Y*, and the
onset of chaos depends upon other factors. White-
head and MacDonald [8] have analyzed the case
a =3, which seems rather typical. They note that
when A4 expands upward across Y* it must also
cross Y, and the continual crossing and recrossing
of Y by an orbit will occur chaotically, much as in
the case of egs. (9). They point out also that the
unstable manifold of the origin O, which is at-
tracted to A, must intersect the stable manifold,
which consists of Y and its inverse images, so that
homoclinic points are produced. Fig. 9 contrasts a
two-sided attractor where 7> 1 with one where
7 < 1. For the latter, which resembles the
Whitehead—MacDonald attractor, the outer
boundary is formed by the unstable manifold of
O, and negative values of y do not occur.

Does homoclinicity play a role in the case that
we have analyzed? Certainly the stable and unsta-
ble manifolds of O do not intersect, while Q and
Q’ have no stable manifolds. It seems possible
that a periodic sequence of some period n may lie
within 4, in which case the nth iterate of eqgs. (13)
should possess hyperbolic fixed points, whose sta-
ble an unstable manifolds should intersect
transversally. Such an occurrence would seem to
be an effect of the intersections of A with C rather
than a cause, if indeed it is possible to separate
cause from effect.

We note finally that for @ < 1/8 the roots of the
characteristic equation (15) are real, and 7,=
[1—( —8a)”?]/(2a). At least in the cases that
we have examined numerically, computational in-
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Fig. 9. (a) The attractor of egs. (13), with a=0.6 and r=1.5.
(b) The same as (a), except that a=1.25 and 7 =0.72,

stability sets in as soon as > 7,, so that 7,=1,,
and computational chaos does not occur.

4. A route to computational instability

Every orbit of the differential system (10) is
attracted to a fixed point, but, for any positive
value of 7 in (13), some orbits escape to infinity.
As 7 increases and A4 eventually expands, its basin
of attraction B contracts. The limit 7, of computa-
tional stability has been reached when A and the
boundary of B meet each other.

For the case a = 0.36 we can say more, Fig. 10
shows basins B for r=1.5 and 7=2.03, deter-
mined numerically by randomly selecting points
and seeing what happens to their iterates. The
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Fig. 10. (a) The combined basin of attraction (shaded region)
of 4 and its image A’ in the y-axis, for egs. (13) with a = 0.36
and 7=1.50. The small quasi-ellipses are 4 and A’. (b) The
same as (a), except that 7= 2.03, and the closed curves are the
outer boundaries of 4 and A4’

basins have some features in common, but they
differ in an important respect. For 7 < 2, all points
on Y are attracted to O, whence B includes a
region about Y that becomes increasingly narrow
as y — co. Likewise B includes regions surround-
ing the inverse image Y* of Y and the successive
inverse images of Y* all extending to infinity.

iy
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Some of these are partially resolved in fig. 10(a).
For 7> 2, points on Y are attracted to infinity,
whence B excludes a region about Y that becomes
increasingly narrow as y — 0. Likewise B excludes
regions surrounding Y* and its inverse images. By
and large these are too narrow to be resolved in
fig. 10(b).

When 7 slightly exceeds 2, A still looks much as
in fig. 3(d), with smooth boundaries. (For 7=2
exactly, A4, although still chaotic, is degenerate.)
As 7 increases further, computational instability
must set in when A expands upward to meet the
very narrow strip enclosing Y*, and hence just
before A meets Y*, assuming that it has not al-
ready set in because 4 has met the boundary of B
somewhere else. Except within periodic windows,
the uppermost part of A still lies on the third
image of C, so that 7 reaches 7, just before this
image becomes tangent to Y*. One can actually
formulate the condition for this tangency as the
condition that a readily determined fifth-degree
equation in y has two equal roots; this leads to an
awkward equation in 7 whose solution seems in-
tractable except numerically.

Numerical solutions of (13) indicate that 7, =
2.073 when a = 0.36. As a increases, 7, becomes
smaller, and one finds that 7, reaches 2.0 when
a=Qz*—22—z-1)/(2z*+2), where z is the
positive root of the equation 4z%(z?—1)*-
(z2+1)>=0; thus a =0.376. For larger values of
a the tangency occurs when 7 < 2, so that points
on Y* do not escape to infinity. The attractor
becomes two-sided, and other considerations de-
termine 7.

5. A system with a limit-cycle attractor

Although numerical determination of a tran-
sient time-dependent orbit is often the easiest, if
not the most economical, means of locating a
fixed-point attractor, numerical integration is
probably more often applied to systems whose
general solution is expected to be unsteady.
Whereas the approximation (2) correctly identifies
the stable fixed points of (1) as fixed points, and

falsifies only their stability, it generally replaces a
time-dependent attracting orbit by a different or-
bit. The simplest unsteady attracting orbits of
equations like (1) are limit cycles.

For our second example we choose the system

dx/dt=ax — ¢y — (ax*+ by?)x, (21a)
dy/dt=cx+by— (ax*+ by?) y, (21b)

where a+b>0, a>b, and ¢>(a—b)/2. All
orbits except the fixed point at the origin are
attracted to the unit circle, as is evident when eqgs.
(21) are transformed to polar coordinates, and
points that have virtually reached the circle con-
tinue to move counterclockwise about it, but, un-
less b =a, at a variable speed. We may therefore
anticipate that, when (21) is approximated by
difference equations, values of 7 that are small
enough to give rather accurate results on the slowly
traveled portions of the circle may be too large to
accommodate the rapidly traveled portions, and
the non-uniform falsification will cause first a
stretching of the circle into an ellipse and then
more pronounced distortions.

We shall scale ¢ to make a=1, and treat the
case b=0, ¢=1, so that (21) reduces to

dx/dt=x—y— x>, (22a)
dy/dt=x—x?%, (22b)
and the first-order approximation becomes

X, =1 +7)x—T1y—1x3, (23a)

Va1 =TX =y +71X%y. (23b)

A 180° rotation about the origin leaves the sys-
tems unchanged. ’

Fig. 11 shows the variations of /; and /, with 7.
The figure is somewhat like the portion of fig. 2
where 7> 1, There is a long limit-cycle range,
with the inevitable periodic windows, followed by
considerable chaos between 7, =0.475 and 7, =
0.592. Fig. 12 is the counterpart of fig. 3, and
shows four attractors. In the first the circle is
simply elongated. In the second it also possesses
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Fig. 11. (a) Numerically estimated values of /; and /, for values of 7 from 0 to 7. (= 0.592) at intervals of 0.001, for egs. (23). (b)
The same, except for values of r from 0.42 to 0.55 at intervals of 0.0002.

pronounced kinks, which gave way to loops in the
third, which is chaotic. Almost the entire range of
T between figs. 12(b) and 12(c) is occupied by a
single window of period 14, and apparently the
invariant closed curve ceases to exist somewhere
within this range. The fourth attractor, near 7,
exhibits some of the features of fig. 3(d).

Just as with egs. (13), there is a critical curve C
(no longer a parabola) where the Jacobian of the
mapping (23) vanishes, and it possesses an image
D that acts as a partial barrier to the spread of 4.
Fig. 13 shows enlargements of portions of figs.
12(b) and 12(c) along with segments of C and D.
As before, a protuberance in the limit-cycle case,
and a loop in the chaotic case, are tangent to D,
and the loop reveals some substructure. The cross-
ing point in the loop possesses two inverse images
in A. Again the importance of homoclinicity is
unclear.

Also as before, an irregularly shaped basin of
attraction of A contracts as A4 expands, until

computational instability sets in. There seem to be
no obvious curves that play the same role that Y
and its inverse images play in the earlier example.

6. Higher-order differencing schemes

The results so far obtained may have limited
relevance for practical computation, since ordinar-
ily we do not use first-order differencing schemes
when seriously seeking the solutions of differential
equations. When we turn to higher order, we are
faced with a choice of schemes. Commonly used
methods for proceeding from a single time to a
subsequent time include truncated Taylor-series
(TS) schemes and Runge-Kutta (RK) schemes.

Taylor-series expansions in 7 of solutions of
polynomially nonlinear systems such as (10) and
(22) ordinarily have finite radii of convergence,
except at fixed points. We may therefore antici-
pate that if the original differential-equation sys-
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Fig. 12. (a) The attractor of egs. (23) with 7= 0.30. (b) The same as (a), except that 7=0.46. (c) The same as (a), except that

7=10.475. (d) The same as (a), except that r = 0.56.

tem has a limit cycle as its single attractor, some
weighted average 7, of the radii of convergence at
the points of the limit cycle will act as a limit, as
N — oo, of the value of 7, for an Nth-order TS
scheme. We can also anticipate that if N is large,
values of 7 slightly below 7, will yield good ap-
proximations to the limit cycle, while those slightly
above 7, will produce computational instability.
The chaotic range of 7 should therefore be very
narrow, if it exists at all. Similar reasoning does
not apply to a Runge-Kutta scheme, which more
nearly resembles a succession of first-order ap-
proximations.

Fig. 14 shows the behavior of /; and /, when
the fourth-order TS and the “standard” fourth-
order RK schemes are applied to egs. (22). In the
former case, 7, is only slightly greater than with
the first-order scheme, and chaos is rather scarce.

In the latter case, 7. is more than twice as large as
in the former, and there is a fairly extensive chaotic
range. Fig. 15(a) shows the attractor produced by
the RK scheme when 7= 0.91 = /2. The curve is
smooth, and is not elongated as in fig. 12(a), but
as a drawing of a circle it leaves much to be
desired. Figs. 15(b) and 15(c) show two attractors
when 7 is near 7,. The latter in particular bears no
resemblance to the cirlce that it is suppose to
approximate. '

Somewhat different arguments apply to Nth-
order TS schemes when the attractor of the origi-
nal system is a fixed point Q. Here the radius of
convergence at a point P increases without limit
as P — Q. As N increases, the limiting value T, of
7 for which Q is stable increases approximately
linearly instead of approaching a limit, so that just
beyond the bifurcation at r,, if N is large, a very
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Fig. 13. (a) An enlargement of a portion of fig. 12(b), and
portions of the curves C and D. (b) The same as (a), except a
portion of fig. 12(c).

slight increase in 7 will expand the attractor to
points with smaller radii of convergence than 7,
i.e., 7, will be reached. Again the chaotic range, if
it exists, will be very narrow.

For egs. (10), 7, is simply the value of r that
makes the Taylor-series expansion of e, trun-
cated to the % term, have an absolute value of
unity, where A satisfies the characteristic equation
(12) with x and y assuming their values on Q or
Q’. The discrepancy between the values of 7,
when the two fourth-order schemes are applied to
(10), with a = 0.36, is less spectacular than with
(22), but qualitatively similar.

We encountered a peculiar phenomenon when
applying the third-order TS scheme to eq. (10).
After computational instability sets in, a further
increase in 7 renders the scheme computationally

stable again. Unlike the first-order scheme, a
higher-order scheme can introduce new fixed
points, and here these points prove to be stable in
a range of 7 that does not overlap the range where
Q and Q' are stable.

7. Concluding remarks

When one seeks approximate solutions of a set
of differential equations by stepwise numerical
integration, the choice of a time increment 7 small
enough to ensure computational stability, but still
not very small, may yield chaotic solutions, even
when the true solutions approach limit cycles or
fixed points. We have examined some aspects of
this computational chaos. In two simple selected
systems we have found that chaos first sets in
when an attractor acquires two distinct points that
map to the same point. This in turn occurs when
the slope of an intersection of the attractor with
the critical curve, in a rectifying coordinate sys-
tem, changes its sign. Other factors can determine
the onset of computational chaos in other systems.

Different schemes, even if they have the same
order, may yield considerably different results. A
Runge-Kutta scheme may produce chaos over a
considerable range of 7 where a Taylor-series
scheme would produce computational instability.
In some instances a further increase in t after
computational instability has set in can bring
about a temporary return to computational stabil-
ity.

Despite the variety of phenomena that we have
considered, our scope has been limited. We have
not examined what can happen when the true
solution of the differential system is chaotic. The
computational scheme might produce more in-
tense chaos, or chaos with a higher fractional
dimension, but it might also replace the chaos by
a limit cycle or a periodic solution. We also have

"not considered what happens when other types of

differencing scheme, some of which are designed
to be absolutely stable, are used. Perhaps more
importantly, we have not examined systems with

i
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Fig. 14. (a) Numerically estimated values of /; and /, for values of 7 from 0 to 7, (= 0.77), at intervals of 0.002, when a fourth-order
Taylor-series scheme is applied to egs. (22). Note the stretched scale for /> 0. (b) The same as (a), except that a fourth-order

Runge-Kutta scheme is applied to egs. (22), and 7, = 1.82.

more than two variables, where the possible non-
chaotic attractors include tori.

Computational chaos is but one instance of
chaos or other interesting behavior that has been
produced, intentionally or inadvertently, by carry-
ing out standard computation procedures without
following all of the directions. Other examples
include the wild oscillations that can occur when
Newton’s method is used as one would use it to
solve an algebraic equation, only without the re-
striction that the initial approximation be a good
one [16].

One may wonder whether computational chaos
is of much importance for practical numerical
integration. In working with a simple system one
can generally afford to avoid it by making 7 very
small. When a system has many variables, how-
ever, economy may demand a larger . We have
demonstrated one system where, with a fourth-

order Runge-Kutta scheme, which one might as-
sume would become rapidly more accurate as T
decreases, finding a value of 7 yielding computa-
tional stability and then cutting this value in half
will still not produce a very good approximation.

A special situation arises in meteorology, where
the systems of equations used in weather forecast-
ing may have thousands or even hundreds of
thousands of variables, and where their solutions
may represent the familiar migratory storms, with
time scales on the order of days, and superposed
smaller-amplitude oscillations with time scales of
a few hours. Often we are interested only in the
slower variations, and we tend to feel that, if we
have chosen = just small enough to avoid the
computational instability that the faster oscilla-
tions would otherwise produce, the solutions will
serve our needs. The present work suggests that
with this choice of 7 the faster oscillations may
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Fig. 15. (a) The attractor A when a fourth-order Runge-Kutta scheme is applied to egs. (22), with 7 =0.91. (b) The same as (a),

except that 7=1.6. (¢) The same as (a), except that r=1.7.

become chaotic, or, if they should be chaotic any-
way, they may become more strongly chaotic or
perhaps not chaotic at all. If there is then appre-
ciable coupling between the faster and slower vari-
ations, the general behavior of the entire solution
may be suspect. Similar situations can probably be

cited throughout the sciences, since multiple-
time-scale phenomena appear to be ubiquitous.
Quite apart from its possible influence on prac-
tical numerical integration, computational chaos
may produce a virtually endless variety of strangely
shaped attractors. More importantly, systems
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exhibiting computational chaos can serve as illus-
trative cases in studies of the properties of nonin-
vertible mappings.
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