
xkcd.com

Logistics

• We	plan	to	return	graded	projects	on	Wednesday, Thursday.	
• I	will	hold	office	hours	all	day	Thursday	so	you	can	pick	up	and	discuss	
your	graded	project.

• Project	2	has	been	posted.
• Groups	have	been	assigned.

Logistics

• We	plan	to	return	graded	projects	on	Wednesday, Thursday.	
• I	will	hold	office	hours	all	day	Thursday	so	you	can	pick	up	and	discuss	
your	graded	project.

• Project	2	has	been	posted.
• Groups	have	been	assigned.

Genetic	Algorithms	
Continued

Lecture	10

On	chromosomes:

4	Bases {T,C,A,G}

Codons (sequences	of	3
bases)	code	for	each	
amino	acid.

Genes	(variable	length	
sequences	of	codons)	
code	for	complete	
proteins.

Proteins	form	the	
Phenotype.	

Wikipedia,	2-22-2017

Terminology

These	loci are	highly	variable	in	their	alleles.		TCR:	T	cell	Receptor

Proteins	form	the	
phenotype.

The	conformation of
a protein	is	how	it
twists	itself.

This	conformation
process	is	dynamical.

Proteins	vibrate	into	low
energy	conformations.	

© Robotics

Robot path planning techniques for protein folding. (Lydia Tapia, UNM)

Xinyu Tang, Shawna Thomas, Lydia Tapia, David P. Giedroc, Nancy M. Amato,
"Simulating RNA Folding Kinetics on Approximated Energy
Landscapes," Journal of Molecular Biology, 3811(4):1055-1067, 2007

Terminology:	Protein	Phenotype

Proteins	form	the	phenotype.

The	conformation of	a	protein	is	how	it
twists	itself.

This	conformation	process	is	dynamical.

Proteins	vibrate	into	low	energy	conformations.	

These	states	are	defined	by	stable	and	unstable
fixed	points	and	saddle	points.

Xia, Kelin, and Guo-Wei Wei. "Molecular nonlinear
dynamics and protein thermal uncertainty
quantification." Chaos: An Interdisciplinary Journal of
Nonlinear Science 24.1, 013103, 2014.

Terminology:	Protein	Phenotype

Terminology	

• Gene	– A	variable	in	the	genome
• Genotype	– A	string	of	symbols	in	the	genome
• Phenotype	– The	decoding	of	a	genome
• Locus	– A	position	in	the	genome	(ith position	in	a	string)
• Allele	– A	value	the	variable	(gene)	can	take	on.
• Epistasis	– interdependence	of	genes	(nonlinearity)
• Encoding	– A	mapping	of	a	set	of	features	into	the	genome.
• Biological	genes	can	be	independent	of	loci.

Schemata
Developing	a	theory	of	Genetic	

Algorithms

John	Holland,	Inventor	of	the	GA.	

The	following	slides	are	based	on	material	from	Goldberg,	D.	Genetic	
Algorithms,	1989	and	Holland	J,	Adaptation	in	Natural	and	Artificial	Systems,	1993

GAs:	Schemata
Consider	a	sample	problem:

Encoding:	integers	as	bitstrings.	
Integers	here	are	the	phenotype and	bitstrings
are	the	genotype.
We	want	to	maximise	the	bitstrings according	to	the
fitness	function:	

F (x) = x

2

GAs:	Instructive	Example

i Initial Pop. Phenotype

1 01101 13
2 11000 24
3 01000 8
4 10011 19

F (x) = x

2

GAs:	Instructive	Example

i Initial Pop. Phenotype Fitness (f)

1 01101 13 169
2 11000 24 576
3 01000 8 64
4 10011 19 361

F (x) = x

2

i Initial Gen. Phenotype Fitness (f) P(i)

1 01101 13 169 0.14
2 11000 24 576 0.49
3 01000 8 64 0.06
4 10011 19 361 0.31

P (i) =
fi
nP
i
fi

Roulette Selection

i 2nd Gen. Phenotype Fitness (f)

1 01101 13 169
2 11000 24 576
3 11000 24 576
4 10011 19 361

After selection

i 2nd Gen. Phenotype Fitness (f)

1 0110 1 13 169
2 1100 0 24 576
3 11	000 24 576
4 10	011 19 361

After selection, 1-point crossover

i 2nd Gen. Phenotype Fitness (f)

1 0110	0	 12 144
2 1100 1 25 625
3 11	011 27 729
4 10	000 16 256

After selection, crossover (P = 1.0),

and mutation

✓
P =

1

1000

◆
No	mutation	in	this	
case.

GAs:	Schemata Bitstring Fitness

01101 169

11000 576

01000 64

10011 361

What	information	
about	the	search
space	does	this	table	
contain?

GAs:	Schemata Bitstring Fitness

01101 169

11000 576

01000 64

10011 361

What	information	
about	the	search
space	does	this	table	
contain?

Notice	that	bitstrings
starting	with	1s	have
higher	fitness.

GAs:	Schemata
1. Similarity	among	strings	

in	the	population.

2. A	causal	relationship	
between	the	strings	and	
the	fitness	function.

Schemata	capture	this.

Bitstring Fitness

01101 169

11000 576

01000 64

10011 361

GAs:	Schemata
1. Similarity	among	strings	

in	the	population.

2. A	causal	relationship	
between	the	strings	and	
the	fitness	function.

Schemata	capture	this.

Bitstring Fitness

01101 169

11000 576

01000 64

10011 361

Schemata	define	functional	equivalence	classes.

GAs:	Schemata

Schemata are defined over the

string alphabet plus a metasymbol ‘*’

‘*’ is just a wildcard (not a Kleene star if you are in CS500).

GAs:	Schemata

10 ⇤ 01

Schemata (or similarity templates)

define equivalence classes.

10 ⇤ 01 = {10101, 10001}

GAs:	Schemata

Schemata	(or	similarity	templates)	define	
equivalence	classes.

10 ⇤ 01 = {10101, 10001}

GAs:	Schemata

Schemata	(or	similarity	templates)	define	
equivalence	classes.

⇤000⇤

10 ⇤ 01 = {10101, 10001}

GAs:	Schemata

Schemata	(or	similarity	templates)	define	
equivalence	classes.

⇤000⇤ = {00000, 00001, 10000, 10001}

10 ⇤ 01 = {10101, 10001}

GAs:	Schemata

Schemata	(or	similarity	templates)	define	
equivalence	classes.

⇤000⇤ = {00000, 00001, 10000, 10001}
0 ⇤ 1 ⇤ ⇤

10 ⇤ 01 = {10101, 10001}

GAs:	Schemata

Schemata	(or	similarity	templates)	define	
equivalence	classes.

⇤000⇤ = {00000, 00001, 10000, 10001}
0 ⇤ 1 ⇤ ⇤ All strings of length 5 with a 0 in

the first position and a 1 in the third.

GAs:	Schemata

How many schemata are there

for an alphabet with cardinality k

and genome length N?

GAs:	Schemata

How many schemata are there

for an alphabet with cardinality k

and genome length N?

(k + 1)N

GAs:	Schemata

We can bound the number of schemata in a population.

GAs:	Schemata

We can bound the number of schemata in a population.

The number of schemata for an individual genome is 2

5.

In our example:

because it can take on its actual value or the wildcard.

(2 values)

GAs:	Schemata

We can bound the number of schemata in a population.

The number of schemata for an individual genome is 2

5.

In our example:

because it can take on its actual value or the wildcard.

If the population has n individuals

there will be at most n22 schemata.

GAs:	Schemata

So what? How does this help us?

GAs:	Schemata

So what? How does this help us?

Holland	makes	an	optimality	argument	for	GAs
using	schemata.

Can	think	in	terms	of	useful	classes	of	genomes,
since	some	of	the	variation	won’t	matter.

GAs:	Schemata

So what? How does this help us?

Can	think	in	terms	of	useful	classes	of	genomes,
since	some	of	the	variation	won’t	matter.

Schemata

Take	a	couple	of	minutes	to	discuss	with	
your	neighbour	the	effect	on	
Schemata	in	the	current	population	of:

•Reproduction
•Crossover
•Mutation

GAs:	Schemata

First we consider reproduction:

GAs:	Schemata
First we consider reproduction:

Schemata with higher fitness tends to increase

each generation. No new schemata appear.

GAs:	Schemata:	Reproduction
First we consider reproduction:

Schemata with higher fitness tends to increase

each generation. No new schemata appear.

Formally, for a schema S in population A,

The number of individuals with schema S at time t+ 1,

given the number at time t is

mS(t+ 1) = mS(t)
f(S)

mean(f(A))

GAs:	Schemata:	Reproduction

Consider a schema with fitness c⇥mean(A), and c > 1

GAs:	Schemata:	Reproduction

Consider a schema with fitness c⇥mean(A), and c > 1

We can rewrite the increase in representation

for this schema, S, as:

mS(t+ 1) = mS(t)

c⇥mean(A)

mean(A)

�

GAs:	Schemata:	Reproduction

We can rewrite the increase in representation

for this schema, S, as:

mS(t+ 1) = mS(t)

c⇥mean(A)

mean(A)

�

mS(t+ 1) = c⇥mS(t)

GAs:	Schemata:	Reproduction

We can rewrite the increase in representation

for this schema, S, as:

mS(t+ 1) = mS(t)

c⇥mean(A)

mean(A)

�

mS(t+ 1) = c⇥mS(t)

mS(t) = c⇥ c⇥ · · ·⇥ c⇥mS(0)

GAs:	Schemata:	Reproduction

We can rewrite the increase in representation

for this schema, S, as:

mS(t+ 1) = mS(t)

c⇥mean(A)

mean(A)

�

mS(t+ 1) = c⇥mS(t)

mS(t) = c⇥ c⇥ · · ·⇥ c⇥mS(0) = ct

GAs:	Schemata

Now consider the e↵ect of 1-point

crossover on schemata.

GAs:	Schemata

Now consider the e↵ect of 1-point

crossover on schemata.

Schemata survive if they are not cut by the crossover

For example:

1 ⇤ ⇤ ⇤ 0 is less likely than ⇤ ⇤ ⇤ 10⇤
to be destroyed.

more

Formally:

Probability of disruption: PD = P⇥
D(S)

LS � 1

where,

P⇥is the crossover probabilty,

D(S) is the defining length of schema S,

L is the string/genome length.

Defining length: distance between the first

and last non-wildcard symbols.

1	fewer	crossover
sites	than	genes

GAs:	Schemata

How about mutation?

GAs:	Schemata
Mutation is more likely to destroy ”higher order” schemata.

The order is the number of fixed (non-wildcard) symbols.

GAs:	Schemata
Mutation is more likely to destroy ”higher order” schemata.

The order is the number of fixed (non-wildcard) symbols.

Probability of disruption: PD =

⇣
1� (1� Pmut)

O(S)
⌘

where,

Pmut is the mutation probability,

O(S) is the order of the schema S.

More	formally,

GAs:	Schemata

These are called “building blocks”

The schema theorem:

Fit schema with lower defining length

and lower order increase exponentially in the

population over time.

GAs:	Schemata

More formally,

mS(t+ 1) � mS(t)
f(S)

mean(S)

1� P⇥

D(S)

L� 1

�O(S)Pmut

�

Schema Theorem

GAs:	Schemata
Building	block	hypothesis:	A	genetic	algorithm	seeks	
optimal	performance	through	the	juxtaposition	of	
short,	low-order,	high- performance	schemata,	called	
the	building	blocks.	

Premature	convergence	is	the	main	challenge.	Building	blocks
can	cause	premature	convergence.

Mitchell, Melanie, Stephanie Forrest, and John H. Holland. "The royal road for genetic algorithms: Fitness
landscapes and GA performance." Proceedings of the first european conference on artificial life. 1992.

A	Royal	Road	Problem:	Testing	the	Building	Block	Hypothesis

https://xkcd.com

Logistics

• Midterm	exam	- March	10th.
• Midterm	review	moved	to	March	6th.

• Project	2	is	due	on	March	10th.
• Project	reviews	are	due	on	March	20th.
• The	in	class	competition	will	be	on	March	20th.

• Transitioning	from	Genetic	Algorithms	to	Cellular	Automata
• We	will	be	using	genetic	algorithms	in	the	next	project	to	explore	cellular	
automata	and	game	theory.

Theory	of	Self-Reproducing	Automata
- John	von	Neumann
• David	Shubsda
• Joshua	Ridens

• Turn	in	your	review	forms	in	to	Bianca	at	the	end	of	the	presentation.
• I	will	put	David	and	Joshua’s	slides	on	the	course	website.

GAs:	k-armed	bandits

Suppose you can play k slot machines.

The ith machine pays jackpot following a

Gaussian probability distribution with

mean = µi, and variance = �2
i

GAs:	k-armed	bandits

Suppose you can play k slot machines.

The ith machine pays jackpot following a

Gaussian probability distribution with

mean = µi, and variance = �2
i

The challenge is to win the most money

possible (or lose the least) over time.

GAs:	k-armed	bandits

Reason about the best trade-o↵

GAs:	k-armed	bandits

Given a maximum of N pulls at the arm we could try:

Allocating an equal number, n, of pulls, where (kn < N), to each arm,

then use all the remaining time to pull on the arm with

the most payouts.

A strategy:

Reason about the best trade-o↵

GAs:	k-armed	bandits

Given N,µi, and �2
i ,

we can define a loss function, L(N,n).

Reason about the best trade-o↵

GAs:	Optimality	of	Trial	Allocation

• There	is	a	trade-off	between	sampling	near	the	best	observed	and	
exploring	the	fitness	landscape.

• Loss	due	to	searching	near	the	currently	known	optimum	is	due	to	
sampling	error.

• Loss	due	to	choosing	areas	that	are	not	known	to	be	good	we	might	
call	performance	loss.	

GAs:	Optimality	of	Trial	Allocation

• The	presence	of	a	trade-off	suggests	an	optimisation	problem.

GAs:	k-armed	bandits

Given N,µi, and �2
i ,

we can define a loss function, L(N,n).

L(N,n) = |µ1 � µ2| [(N � n)q(n) + n(1� q(n))]

De Jong, K. A. An analysis of the behaviour of a class of genetic algorithms. Diss. PhD thesis, University of Michigan, 1975.

The 2-arm case generalises

Reason about the best trade-o↵

GAs:	k-armed	bandits

L(N,n) = |µ1 � µ2| [(N � n)q(n) + n(1� q(n))]

Where q(n) is the probability that the worst

arm is the best arm after n pulls.

In other words q(n)is the probability that you got unlucky.

De Jong, K. A. An analysis of the behaviour of a class of genetic algorithms. Diss. PhD thesis, University of Michigan, 1975.

as a function of the explore/exploit trade-o↵.

Holland	J,	Adaptation	in	Natural	and	Artificial	Systems,	1993

“The ratio of trials

of the observed best

to the second best

grows exponentially.”

q(n) decreases

exponentially with n.

To minimise q(n)

we allocate O(en)

trials to the known best.

GAs:	k-armed	bandits
Holland showed that allocating an exponential number of pulls

to the best performing slot machine minimises the loss function L(N,n).

This exponential allocation to exploitation best solves the problem.

Holland, J., "Genetic algorithms and the optimal allocation of trials." SIAM Journal on Computing 2.2 (1973): 88-105.

GAs:	k-armed	bandits
Holland showed that allocating an exponential number of pulls

to the best performing slot machine minimises the loss function L(N,n).

This exponential allocation to exploitation best solves the problem.

GAs:	k-armed	bandits
Holland showed that allocating an exponential number of pulls

to the best performing slot machine minimises the loss function L(N,n).

This exponential allocation to exploitation best solves the problem.

Diversity

• A	pitfall	of	GAs	is	that	they	may	converge	too	early	on	a	local	maxima.
• If	the	population	were	infinite	this	wouldn't	be	a	problem.
• The	smaller	the	population	the	more	likely	they	are	to	converge	
prematurely.

• Building	blocks	can	increase	premature	convergence	for	some	
problems.

Schemata:	Implicit	Parallelism

Holland also showed in 1985 that if K

is the number of string processed each generation

and N is the number of schemata

Then N 2 O(K3).

s

Diversity:	Island	GAs

Recall	Darwin’s	famous	finches.	The	diversity	is	in	part	due	to	evolution	on	islands.

Diversity:	Island	GAs

What	would	this	look	like	as	an	algorithm?

Diversity:	Elitism

• Diversity	is	great	for	avoiding	local	minima.
• How	do	we	keep	from	moving	too	far	from	regions	we	know	are	
good.

• Roulette	selection	can	easily	discard	the	most	fit	individuals.

Diversity:	Elitism

• Diversity	is	great	for	avoiding	local	minima.
• How	do	we	keep	the	population	from	forgetting	about	regions	we	
know	are	good.

• Roulette	selection	can	easily	discard	the	most	fit	individuals.
• High	mutation	rates	can	move	the	whole	population	to	a	lower	local	
maxima.

• Copying	the	highest	fitness	individual	into	the	next	generation	
unchanged	is	called	elitism.

Diversity:	Elitism

*Villalobos-Arias	et	al,	“Asymptotic	Convergence	of	Some	
Metaheuristics	Used	for	Multiobjective	Optimization”,	Foundations	of	
Genetic	Algorithms,	2005	

• Elitism	guarantees	that	the	GA	will	converge*
(Applies	to	simulated	annealing	and	artificial immune	system	optimization	as	well)

Selection	Pressure:	Tournaments
• Selection	pressure	is	a	measure	of	how	harsh	we	make	
the	world.

•At	one	extreme	only	the	very	fittest	individual	would	
survive.	

•At	the	other	extreme	everyone	survives.

Selection	Pressure:	Tournaments
• If	selection	pressure	is	too	high	the	GA	will	converge	
prematurely	on	a	local	minima.

• If	selection	pressure	is	too	low	the	GA	will	not	converge	
at	all.

Selection	Pressure:	Tournaments
• Tournament	selection	is	one	way	to	tune	the	selection	pressure.

Evolving	Programs
Project	2

Project	2:	Core	Wars

• Alexander	Dewdney,	Mathematician	and	Computer	Science
• Wrote	a	series	of	articles	called	Mathematical	Recreation	
for	Scientific	American

• One	of	these	was	Core	Wars
• Inspired	by	a	real	life	incident	(Creeper	and	Reaper).
• Christopher	Langton	invited	Dewdney	to	present	core	wars

At	the	first	Alife	conference.
• Playing	with	Core	Wars	was	once	considered	dangerous.
• Capable	of	self-mutation…

Some	x86	Assembly	language

Address Instruction
77E814EE mov
77E814F1 mov
77E814F8 add
77E814FB jmp
77E81500 push
77E81501 xor
77E81503 cmp
77E81505 push
77E81506 push

Register or RAM Address
esi,dword ptr [edi+8]

dword ptr [ebp+64h], 0Ah
esi, 4Ah
77E7E91A
ebx
ebx,ebx
ecx,ebx
esi
edi

;redcode
;author:	T77
;name:	Example1
;assert	CORESIZE=8000	&&	MAXLENGTH	>	100
MOV	0,	1

;redcode
;author:	T77
;name:	Example2
;assert	CORESIZE=8000	&&	MAXLENGTH	>	100
ADD	#4,	3	 Program	counter	is	here	
MOV	2,	@2	
JMP	-2	
DAT	#0,	#0

#	- immediate addressing

;redcode
;author:	T77
;name:	Example2
;assert	CORESIZE=8000	&&	MAXLENGTH	>	100
ADD	#4,	3	
MOV	2,	@2																	Program	counter	is	here	
JMP	-2	
DAT	#0,	#4

;redcode
;author:	T77
;name:	Example2
;assert	CORESIZE=8000	&&	MAXLENGTH	>	100
ADD	#4,	3	
MOV	2,	@2
JMP	-2	
DAT	#0,	#4	
.
.
.
DAT	#0,	#4	

+2

B	field points here

@	- indirect addressing

;redcode
;author:	T77
;name:	Example2
;assert	CORESIZE=8000	&&	MAXLENGTH	>	100
ADD	#4,	3	
MOV	2,	@2
JMP	-2	
DAT	#0,	#4	
.
.
.
DAT	#0,	#4	

+2

B	field points here+4

@	is indirect addressing

ADD	#4,	3	
MOV	2,	@2
JMP	-2	
DAT	#0,	#4	
.
.
.
DAT	#0,	#4	

+2

B	field	points	here+4

This	program	places	dats
separated	by	4	addresses	forever.

;redcode
;author:	T77
;name:	Example3
;assert	CORESIZE=8000	&&	MAXLENGTH	>	100
spl 0
mov 2, <-1
jmp -1, -1

Create new	thread
And	continue with next
instruction

;redcode
;author:	T77
;name:	Example3
;assert	CORESIZE=8000	&&	MAXLENGTH	>	100
spl 0
mov 2, <-1
jmp -1, -1

<	Indirect with
predecrement

