
Object Oriented Programming 1

C++ Classes
&

Object Oriented Programming

What is it?

Object Oriented Programming 2

Object Oriented Programming
•  One of the first applications of modern

computing was modeling and simulation.
•  Scientists soon realized that functions alone

were insufficient to model systems
intuitively

•  If we are going to model a planet we would
like to actually create a virtual planet, define
how it behaves in our simulated universe,
and then just observe it.

Object Oriented Programming 3

Object Oriented Programming
•  Programmers quickly realized that the idea of

creating virtual “things” made software
engineering simpler to think about.

•  If we create within our programs agents and
objects then we can assign duties and tasks to
them.

•  This is really just another way applying
decomposition to our software.

•  Break up the problem to be solved into logical
parts and assign each part to an object.

Object Oriented Programming 4

Object Oriented Programming
•  Even engineers are social animals - we

evolved to think about the world in terms of
agents and objects (not recursion).

•  In many situations we solve large problems
by delegation. That is we have workers who
specialize in solving a particular problem.

•  Those specialists have specific skills that
they can apply to a specific class of
problems.

Object Oriented Programming 5

Object Oriented Programming
•  We can pattern software after a group of

specialists at a company working on a
problem.

•  For example, there are two objects we have
used – cin and cout.

•  cin is the name of an object who knows all
about reading data from the keyboard and
putting it into a variable.

•  It is easier to ask cin to do the work than
write a program to do it ourselves.

Object Oriented Programming 6

Object Oriented Programming
•  Important: we don’t have to have any idea

how cin does its job. We just trust that it
does.

•  Just like we don’t question the US Mail
about how our letter gets from here to
Seattle.

•  We only care that it arrives within certain
tolerances – not how it got there.

•  This is called abstraction, information-
hiding, and encapsulation and we like it!

Object Oriented Programming 7

Object Oriented Programming
•  When we mail a letter all we have to worry

about is following the correct protocol to
ensure our letter gets to the right place.

•  We have to know where to go, how to pay, the
format expected for the destination address and
return address, etc.

•  In software this protocol is called the interface.
•  All objects have to have an interface that

clearly defines how we can interact with the
object.

Object Oriented Programming 8

Object Oriented Programming
•  Almost any problem can be broken up

into objects.
• Objects are defined by three things:

– Their state – this is the information
they contain.

– Their behavior or capabilities – these
are the functions they have access to.

– Their interface – the rules describing
how they interact with other objects in
the system.

Object Oriented Programming 9

Object Oriented Programming

•  Programmer thinks about and defines the
attributes and behavior of objects.

•  Often the objects are modeled after real-
world entities.

•  Very different approach than function-based
programming (like C).

Object Oriented Programming 10

Reasons for OOP

Abstraction
Encapsulation

Information hiding
Inheritance

Polymorphism

Software Engineering Issues

Object Oriented Programming 11

Class: Object Types
•  C++ uses classes and structures to

define objects
•  A C++ class is an object type.
•  When you create the definition of a

class you are defining the attributes and
behavior of a new type.
– Attributes are data members.
– Behavior is defined by methods.

Object Oriented Programming 12

Creating an object
•  The interface acts as a contract specifying how the

object will behave – as long as the code fulfills the
contract we don’t care how it works.

•  Defining a class does not result in creation of an
object.

•  Declaring a variable of a class type creates an
object. You can have many variables of the same
type (class).

This is called instantiation of the class, i.e. we create

an instance of the object.

Object Oriented Programming 13

Information Hiding
•  The interface to a class is the list of public

data members and methods.
•  The interface defines the behavior of the

class to the outside world (to other classes
and functions that may access variables of
your class type).

•  The implementation (the code that makes
the class work) doesn't matter outside the
class.

Object Oriented Programming 14

Information Hiding (cont.)
•  This is good because it allows us to change

the underlying code without forcing
everyone who uses our objects to change
their code.

•  You can change the implementation and
nobody cares! (as long as the interface is the
same).

Object Oriented Programming 15

Private vs. Public
•  Classes define certain parts of the object

they define to be public, private, or
protected.

•  Public parts of the object can be used by
anyone who has access to the object.

•  The private parts of the object are for the
objects internal use only.

•  Protected parts are accessible from outside
the object only under certain circumstances.

•  Try to make as much private as possible.

Object Oriented Programming 16

Special Member Functions
•  Constructors: called when a new object

is created (instantiated).
– can be many constructors, each can take

different arguments
•  Destructor: called when an object is

destroyed
– only one, has no arguments.
– The destructor is responsible for cleaning

up after the object

Object Oriented Programming 17

Anatomy of a Class
Class Definition (function prototypes)

class Dog
{
 public:
 Dog(char* dog_name = “rover”);
 bark();
 ~Dog();

 char* name;
 private:

};

Put all this in D
og.h

Object Oriented Programming 18

#include “Dog.h”
using namespace std;
Dog::Dog(char* dog_name)
{

 name = dog_name;
}
Dog::bark()
{

 cout << “woof”;
}
Dog::~Dog()
{//nothing to do}

Class Implementation (function definitions)
Put all this in D

og.cpp

Object Oriented Programming 19

#include “Dog.h”
int main()
{

 char my_dogs_name = “fido”;

 // Create object of type “Dog”
 Dog mydog(my_dogs_name);

 // Access data and call methods in “mydog”
 cout << mydog.name << “: “;
 mydog.bark();

 return 0;

}

Using a Class and an Obeject

Object Oriented Programming 20

Accessing Data Members

•  Data members are available within each
method (as if they were local variables).

•  Public data members can be accessed by
other functions using the member access
operator ".".

Object Oriented Programming 21

Accessing class methods

•  Within other class methods, a method can
be called just like a function.

•  Outside the class, public methods can be
called only when referencing an object of
the class.

Object Oriented Programming 22

Classes and Files
•  The relationship between C++ class

definitions and files depends on the
compiler.

•  In general you can put class definitions
anywhere! Visual C++ wants one class per
file.

•  Most people do this:
–  class definition is in classname.h
–  any methods defined outside of the class

definition are in classname.cpp

Object Oriented Programming 23

Classes and Files
•  Now that we are working with multiple source

(.cpp) and header files (.h) we need to be more
sophisticated about compiling.

•  Each source file is compiled separately into
object files.

•  These object files cannot be run independently
they have to be linked into a single executable
program file.

•  Unix systems use the make command to
organize compilation and linking.

