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C++ Classes  
& 

Object Oriented Programming 

What is it? 
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Object Oriented Programming 
•  One of the first applications of modern 

computing was modeling and simulation. 
•  Scientists soon realized that functions alone 

were insufficient to model systems 
intuitively 

•  If we are going to model a planet we would 
like to actually create a virtual planet, define 
how it behaves in our simulated universe, 
and then just observe it. 
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Object Oriented Programming 
•  Programmers quickly realized that the idea of 

creating virtual “things” made software 
engineering simpler to think about. 

•  If we create within our programs agents and 
objects then we can assign duties and tasks to 
them. 

•  This is really just another way applying 
decomposition to our software. 

•  Break up the problem to be solved into logical 
parts and assign each part to an object. 
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Object Oriented Programming 
•  Even engineers are social animals - we 

evolved to think about the world in terms of 
agents and objects (not recursion). 

•  In many situations we solve large problems 
by delegation. That is we have workers who 
specialize in solving a particular problem. 

•  Those specialists have specific skills that 
they can apply to a specific class of 
problems.  
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Object Oriented Programming 
•  We can pattern software after a group of 

specialists at a company working on a 
problem. 

•  For example, there are two objects we have 
used – cin and cout. 

•  cin is the name of an object who knows all 
about reading data from the keyboard and 
putting it into a variable. 

•  It is easier to ask cin to do the work than 
write a program to do it ourselves. 



Object Oriented Programming 6 

Object Oriented Programming 
•  Important: we don’t have to have any idea 

how cin does its job. We just trust that it 
does. 

•  Just like we don’t question the US Mail 
about how our letter gets from here to 
Seattle.  

•  We only care that it arrives within certain 
tolerances – not how it got there. 

•  This is called abstraction, information- 
hiding, and encapsulation and we like it! 
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Object Oriented Programming 
•  When we mail a letter all we have to worry 

about is following the correct protocol to 
ensure our letter gets to the right place. 

•  We have to know where to go, how to pay, the 
format expected for the destination address and 
return address, etc. 

•  In software this protocol is called the interface. 
•  All objects have to have an interface that 

clearly defines how we can interact with the 
object. 
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Object Oriented Programming 
•  Almost any problem can be broken up 

into objects. 
• Objects are defined by three things: 

– Their state – this is the information 
they contain. 

– Their behavior or capabilities – these 
are the functions they have access to. 

– Their interface – the rules describing 
how they interact with other objects in 
the system. 
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Object Oriented Programming 

•  Programmer thinks about and defines the 
attributes and behavior of objects. 

•  Often the objects are modeled after real-
world entities. 

•  Very different approach than function-based 
programming (like C). 
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Reasons for OOP 

Abstraction 
Encapsulation 

Information hiding 
Inheritance  

Polymorphism 
 

Software Engineering Issues 
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Class: Object Types 
•  C++ uses classes and structures to 

define objects 
•  A C++ class is an object type.  
•  When you create the definition of a 

class you are defining the attributes and 
behavior of a new type. 
– Attributes are data members. 
– Behavior is defined by methods. 
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Creating an object 
•  The interface acts as a contract specifying how the 

object will behave – as long as the code fulfills the 
contract we don’t care how it works. 

•  Defining a class does not result in creation of an 
object. 

•  Declaring a variable of a class type creates an 
object. You can have many variables of the same 
type (class). 

 
This is called instantiation of the class, i.e. we create 

an instance of the object. 
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Information Hiding 
•  The interface to a class is the list of public 

data members and methods. 
•  The interface defines the behavior of the 

class to the outside world (to other classes 
and functions that may access variables of 
your class type). 

•  The implementation (the code that makes 
the class work) doesn't matter outside the 
class. 
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Information Hiding (cont.) 
•  This is good because it allows us to change 

the underlying code without forcing 
everyone who uses our objects to change 
their code. 

•  You can change the implementation and 
nobody cares! (as long as the interface is the 
same). 
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Private vs. Public 
•  Classes define certain parts of the object 

they define to be public, private, or 
protected. 

•  Public parts of the object can be used by 
anyone who has access to the object. 

•  The private parts of the object are for the 
objects internal use only. 

•   Protected parts are accessible from outside 
the object only under certain circumstances. 

•  Try to make as much private as possible. 
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Special Member Functions 
•  Constructors: called when a new object 

is created (instantiated). 
– can be many constructors, each can take 

different arguments 
•  Destructor: called when an object is 

destroyed 
– only one, has no arguments. 
– The destructor is responsible for cleaning 

up after the object  
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Anatomy of a Class 
Class Definition (function prototypes) 

class Dog 
{ 
 public:  
   Dog( char* dog_name = “rover” ); 
   bark(); 
   ~Dog(); 

     char* name; 
 private: 

}; 
 

Put all this in D
og.h 



Object Oriented Programming 18 

#include “Dog.h” 
using namespace std; 
Dog::Dog( char* dog_name) 
{ 

 name = dog_name; 
} 
Dog::bark() 
{ 

 cout << “woof”; 
} 
Dog::~Dog() 
{//nothing to do} 

Class Implementation (function definitions) 
Put all this in D

og.cpp 
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#include “Dog.h” 
int main() 
{ 

 char my_dogs_name = “fido”; 
 

 // Create object of type “Dog” 
 Dog mydog( my_dogs_name ); 

    // Access data and call methods in “mydog” 
 cout << mydog.name << “: “; 
 mydog.bark(); 
  
 return 0; 

} 
  
  

Using a Class and an Obeject 
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Accessing Data Members 

•  Data members are available within each 
method (as if they were local variables). 

•  Public data members can be accessed by 
other functions using the member access 
operator ".".  
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Accessing class methods 

•  Within other class methods, a method can 
be called just like a function. 

•  Outside the class, public methods can be 
called only when referencing an object of 
the class. 
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Classes and Files 
•  The relationship between C++ class 

definitions and files depends on the 
compiler. 

•  In general you can put class definitions 
anywhere! Visual C++ wants one class per 
file. 

•  Most people do this: 
–  class definition is in classname.h 
–  any methods defined outside of the class 

definition are in classname.cpp 
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Classes and Files 
•  Now that we are working with multiple source 

(.cpp) and header files (.h) we need to be more 
sophisticated about compiling. 

•  Each source file is compiled separately into 
object files. 

•  These object files cannot be run independently 
they have to be linked into a single executable 
program file. 

•  Unix systems use the make command to 
organize compilation and linking. 


