
1

CS151: Computer Programming
Fundamentals

•  Today (6/9)
 Course Information
 Algorithms and Computers
 Brief History of Computers
 Anatomy of a Computer
 Language Hierarchy

2

Course Information

• website: www.unm.edu/~mfricke
• mailing list: cs151@cs.unm.edu
• Use CIRT AIX machines (xwin32)
•  Emacs with g++ will be the official

development environment
•  Summer courses are very intensive

3

Current Assignments

•  Homework 1 has been posted.
 Variables, mathematical and logical
operators, input/output, and the “if”
operator.
 Due in one week (June 16th) at midnight.

•  Project 1 has been posted.
 Write a binomial root solver using the
quadratic equation.
 Due in two weeks (June 23rd) at midnight.

4 Programs and Algorithms

•  Algorithm: a series of abstract steps that
solve a particular problem
– Mathematics
– Food Recipes
– Textile Weaving

5

Programs and Algorithms

•  Computer (idealized definition):
anything capable of following the steps
of an algorithm

•  Universal computer: a computer
capable of following the steps of all
possible algorithms

•  Program: the encoding of an algorithm
so that a computer can follow the steps

6

The First Computers

14th Century
Counting Tables!

A 20th Century
Computer Center !

7

Napier’s Bones and the Calculating Clock

8

Baron Gottlieb Leibniz
The “Step Reckoner,” 1671

9

Charles Babbage's Analytical Steam Engine
Designed in the 1830s, not built until 1906

10

Countess Ada Lovelace
Program for generating Bernoulli Numbers (1842)

11

Alan Turing (1936)

12

The Z3 built by Konrad Zuze in Berlin 1941

13

14
Von Neumann Architecture

•  Johann Von Neumann popularized the
Stored Program computer.

•  Previous computers (like the COLLOSUS
and ENIAC) had the program literally wired
in.

•  The Z3 had its program on punch tape.
•  Stored program computers made changing

the algorithm a computer was to execute
trivial. (compared to rewiring it!)

•  It also meant that the sequence of execution
could be changed while the program was
running.

15

Anatomy of a Computer

•  Six logical units of modern computers
–  Input (Keyboard, mouse, etc)
–  Output (Monitor, Printer, etc)
–  Volatile Memory (RAM or main memory)
–  Long term Memory (Disk, punch tape, etc)
–  Central Processing Unit (Processor)
–  Arithmetic and Logic Unit (Processor)
(+ Bus, pipeline so all the other units can

communicate)

16

Basic Organization of a Modern Computer

CPU! ALU!

Memory!

I/O!
Bus!

Instructions!
Instructions!

Data!
Data!

Programs!

17

Anatomy of a Computer - Volatile Memory

•  Volatile memory (RAM) consists of numerous
(typically millions or billions) of binary digits
(“bits”).

•  A bit can hold the value 1 (the bit is set) or zero
(the bit is unset).

•  A collection of eight bits can have 256 different
states and so can be used to represent different
things. For example 256 different characters
(A,B, C, … a, b, c, … &, *, $) can be represented
with a single byte by defining each different
sequence of 1s and 0s to represent a different
character.

18

Anatomy of a Computer - Volatile Memory

•  In memory all these bits have to be
organized in such a way that we can
find them when we want them.

•  Memory is divided up into “words,”
each word is typically two bytes (16
bits).

19

Anatomy of a Computer - Volatile Memory

•  There are other terms for various
numbers of bits – for example, half a
byte (4 bits) is a nibble, four bytes are
called a “long” or a “dword” (double
word), 1024 bytes is a kilobyte.

•  The more bits a division has the more
states it can represent but the more
memory it uses.

20

Anatomy of a Computer - CPU

•  The CPU has several local “registers.”
Registers are memory locations just
like RAM.

•  The CPU is able to “fetch” values from
RAM and place them into its registers.

•  Data in the registers can then be
operated on by the ALU and CPU.

21

Anatomy of a Computer - CPU

•  The job then of the CPU is to load
words into its registers from RAM,
perform some operation on the
registers and then store the result
back into RAM.

•  Simply, the list of instructions that
tell the processor what data to load
and what operations to perform is a
computer program.

22

Anatomy of a Computer – ALU

•  The ALU contains arithmetic and logic
circuits which allow it to perform
simple operations on data bits such as
addition, multiplication, equality, etc.

23

Anatomy of a Computer

•  Secondary storage is mapped out in much the
same way as main memory (RAM). The media for
storing the bits is non-volatile and so does not
need constant power. This is where we save our
programs when they are not running.

•  Input devices can be as diverse as keyboards,
scanners, and temperature sensors.

•  Output devices are typically monitors, sound
cards, and printers.

•  Many devices are used for both input and output,
such as network cards.

24

Languages – Machine Language

•  Every CPU has a list of actions that it
is capable of performing (the
instruction set).

•  These instructions must be given to the
CPU in binary code for it to understand
them.

•  A typical instruction might be:
 00000001 01100101 10010010 01

25

Languages – Machine Language, cont

A typical instruction might be:
 00000001 01100101 10010010 01

Where 00000001 means “load” (copy),
“01100101 10010010” is the address
of a word in memory, and 01 is the
address of a register.
 So this instruction tells the computer to
load the value held at a certain address
into the first register.

26

Languages - Assembly Language

 Machine language was too difficult to work
with so programmers added a layer of
abstraction.
 They wrote programs to translate keywords
into the appropriate machine language.
 Now they could write “load 77E814F1 esi”
and the “assembler” would translate the
code into the 1s and 0s of machine
language.

 Typical commands are things like load, add,
jump, add1, poke, and, xor, etc.

27
Languages – Assembly Language

Typical snapshot of assembly language on a Pentium IV

Address Instruction Register or RAM Address
77E814EE mov esi,dword ptr [edi+8]
77E814F1 mov dword ptr [ebp+64h],0Ah
77E814F8 add esi,4Ah
77E814FB jmp 77E7E91A
77E81500 push ebx
77E81501 xor ebx,ebx
77E81503 cmp ecx,ebx
77E81505 push esi
77E81506 push edi

28

Languages – High Level Languages

•  A lot of sophisticated software was
written using machine and assembly
language but it was still too difficult to
understand.

•  High level languages have added a
further level of abstraction such that a
single command in Fortran, Java, or C
++ might be translated into hundreds or
thousands of assembly language
instructions.

29

Languages – High Level Languages

•  High level languages also allow the
programmer to define new commands in
terms of old ones.

•  This means that most high level languages
are unlimited in expressive power and in
their potential to abstract away complexity.

•  Once you have one high level language it
become easy to use it to write other high
level languages.

30

Languages - High Level Languages

•  The first high level language was created by John
Backus at IBM, in 1954.

•  It was originally called SpeedCoding but later the
name was changed to the Formula Translation
Language or Fortran.

•  In 1958 John McCarthy developed the List
Processing Language or Lisp. Algol, Fortran III,
Flow-Matic which became Cobol all came out the
same year.

•  There are now well over 200 major high level
programming languages in 26 different groups.

31

A Brief History of High Level Languages

•  C
–  Evolved from two other programming languages

•  BCPL and B
–  “Typeless” languages

–  Dennis Ritchie (Bell Laboratories)
•  Added data typing, other features

–  Development language of UNIX
–  Hardware independent

•  Portable programs
–  1989: ANSI standard
–  1990: ANSI and ISO standard published

•  ANSI/ISO 9899: 1990

32

A Brief History of High Level Languages

•  History of C++
–  Extension of C
–  Early 1980s: Bjarne Stroustrup (Bell Laboratories)
–  “Spruces up” C
–  Provides capabilities for object-oriented programming

•  Objects: reusable software components
–  Model items in real world

•  Object-oriented programs
–  Easy to understand, correct and modify

–  Hybrid language
•  C-like style
•  Object-oriented style
•  Both

