
Introduction to HPC
at the UNM Center for

Advanced
Research Computing

Matthew Fricke (mfricke@unm.edu)
Research Assistant Professor

http://unm.edu/~mfricke

Please send corrections to me at mfricke@unm.edu.
Version 1.5.

mailto:mfricke@unm.edu
mailto:mfricke@unm.edu

Why we are here!

• You have a computational task of some sort
• Most people who come to CARC fall into these categories
• … for a publication you are working on
• … an upcoming class assignment
• … analysis of data for a government agency

• The common feature is that they require more
compute/memory/storage resources than is commonly available.

Why we are here!

• To use the resources at CARC effectively there are things you have to learn!
Some are commonplace but some are very specific to HPC and CARC.

By the end of the day you will know how to:
• Request time compute time on the clusters (PBS scripting)
• Interact with contained environments (Anaconda, Modules, Singularity)
• Get output from your compute jobs
• Use storage appropriately (scratch vs user storage)
• Write scripts to run embarrassingly parallel tasks
• Write and run a simple MPI program for tightly coupled tasks

• Ultimately get a huge increase in the computing power you can apply.

1.1 Changelog
• Corrected various typos
• Changed font to make code clearer
• Reordered MAUI/Torque slides
• Corrected “conda list” to “conda env list”
• Added –machinefile $PBS_NODEFILE to mpirun example
• Added slide on torque queue status commands
• Modified pbs examples for wheeler instead of galles

1.2
• Specify the debug queue in the examples
• Ask for 8 cores not 2 since we are using wheeler/wheelie for workshops
1.3
• Typo “-l” should be “-l”
1.4
• Restructured examples around python program to calculate 𝜋

Outline

• What High Performance Computing (HPC) and the Center for
Advanced Research Computing all about
• Accessing your account and transferring files
• Some useful Linux commands
• Software environments
• A short python program to calculate 𝜋
• 15 min break

Outline

• Tour
• Submitting compute jobs at CARC
• Parallel Jobs
• GNU Parallel
• 15 min break
• JupyterHub
• Message Passing Interface

What is High Performance Computing?

Scaling up
• NVIDIA DGX-2H ($400,000 each, 81k CUDA

cores, 10240 tensor cores)
https://www.nvidia.com/content/dam/en-
zz/es_em/Solutions/Data-Center/dgx-
2/nvidia-dgx-2h-datasheet.pdf

Scaling out
• Stampede 2
• https://www.tacc.utexas.edu/systems/sta

mpede2
• $30,000,000, 285,000 CPUs

https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/nvidia-dgx-2h-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/nvidia-dgx-2h-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/nvidia-dgx-2h-datasheet.pdf
https://www.tacc.utexas.edu/systems/stampede2
https://www.tacc.utexas.edu/systems/stampede2

Why it Matters to You

• Grant and publication reviewers know about these systems so there
are no excuses for small sample sizes.
• Machine Learning is showing up everywhere from cosmology to

firefighting. Machine Learning requires enormous resources to
process huge datasets.

• ssh username@wheeler.alliance.unm.edu

The Center for Advanced Research
Computing’s Mission

The UNM Center for Advanced Research
Computing is the hub of computational
research at UNM and one of the largest
computing centers in the State of New
Mexico. It is an interdisciplinary community
that uses computational resources to create
new research insights. The goal is to lead and
grow the computational research community
at UNM.
CARC provides not just the computing
resources but also the expertise and support
to help the university’s researchers. This
service is available to faculty, staff, and
student researchers free of charge through
support from the UNM Office of the Vice
President for Research.
http://carc.unm.edu

Big Data and Machine Learning
• Machine learning needs lots of everything.
• The current revolution in convolutional neural networks (Think Google,

Self-driving cars, etc) is due to algorithms rooted in the 1960s being
given huge training sets.

• Most of machine learning comes
down to floating point matrix and
vector operations. GPUs excel at
those operations and are orders of
magnitude fast at them than CPUs.

• Xena has dual Nvidia Tesla K40M
GPUs for this purpose.

Biology

• Computational biology memory usage
increases with input sizes. Rapid
genotyping tools generate sequences
faster and faster.
• Hundreds of GB of RAM are becoming

a normal requirement to complete
these calculations.
• The Taos cluster is dedicated to

computational biology and has 440
CPUs and 300 GB per node.
• Xena has 3 TB RAM nodes.

• Pandemic flu modelling
• Tuberculosis antibiotic resistance
• Pacific island bird genetics
• Intra-species viral spread
• NM Tree species mapping from LASER scans

Physics
• Wheeler is a general purpose scale-out

machine used by biophysicists,
cosmologists, and many others.
• Gibbs is primarily used by

computational chemists.

Long Wavelength Array Radio
Telescope
Data Processing on Wheeler

Molecular simulation of
new photovoltaic materials

When users need a lot of network bandwidth
or storage

• Lots of data comes in the form of large images
• Largest online pathology database (15k people,

15k image each)
• MRI and FMRI image databases

• Specialized Network Access
• Mapping the Great Firewall

2016106 NASA Astrobiology Institute - Agnostic Life Detection Fricke, Matthew

2016104 Neuroimaging Analysis Replication and Prediction Study: UNM Branch Hogeveen, Jeremy P

2016103 Machinbe Learning & Cognitive Radio Christodoulou, Christos

2016102 Exploring Tendency for Localized Plastic Flow in Fe-Cr alloys ANDEROGLU, Osman

2016101 Finding approximate symmetries in graphs Sorrentino, Francesco

2016100 Simulation of impact on armor plate using Velodyne Shen, Yu-Lin

2016099 Cyber-infrastructure Performance Modeling Bridges, Patrick G

2016098 Effective refinement of protein structure Nishima, Wataru
2016097 LANL_HIGRAD Poroseva, Svetlana
2016096 Coarse-grained modeling of biomolecules He, Yi
2016095 Resilient Composites Taha, Mahmoud Reda
2016093 Computational Investigation of Ru Photochromes Rack, Jeffrey J

2016090 Reinforcement learning neuropathologies underlying psychiatric sequelae in Traumatic Brain Injury Hogeveen, Jeremy P

2016087 Driving forces and dynamics between small molecules and amyloid- Aβ aggregates Chi, Eva Y

2016086 Polyurethane Foam Modeling Tjiptowidjojo, Kristianto

2016084 An Interval Multi-level Monte Carlo Method for Reliability Analysis of Imprecise Probabilistic Systems Motamed, Mohammad

2016083 Modeling Immune System Cell Search Processes Fricke, Matthew

2016081 RNA transcriptome sequencing of T-cells exposed to Uranium and Arsenic Schilz, Jodi R

2016080 Predicting Progression to Alzheimer's Disease Calhoun, Vince

2016079 Relating plant traits to biomass dynamics in New Mexico aridlands Whitney, Kenneth

2016078 Statistical methods for investigating large scale gene environment interaction Luo, Li

2016077 TB Genomic Analysis Wearing, Helen
2016076 LiDAR-based tree identification in Northern New Mexico

https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016106
https://www.carc.unm.edu/irs/show_project.html?project_id=2016106
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016104
https://www.carc.unm.edu/irs/show_project.html?project_id=2016104
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016103
https://www.carc.unm.edu/irs/show_project.html?project_id=2016103
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016102
https://www.carc.unm.edu/irs/show_project.html?project_id=2016102
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016101
https://www.carc.unm.edu/irs/show_project.html?project_id=2016101
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016100
https://www.carc.unm.edu/irs/show_project.html?project_id=2016100
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016099
https://www.carc.unm.edu/irs/show_project.html?project_id=2016099
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016098
https://www.carc.unm.edu/irs/show_project.html?project_id=2016098
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016097
https://www.carc.unm.edu/irs/show_project.html?project_id=2016097
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016096
https://www.carc.unm.edu/irs/show_project.html?project_id=2016096
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016095
https://www.carc.unm.edu/irs/show_project.html?project_id=2016095
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016093
https://www.carc.unm.edu/irs/show_project.html?project_id=2016093
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016090
https://www.carc.unm.edu/irs/show_project.html?project_id=2016090
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016087
https://www.carc.unm.edu/irs/show_project.html?project_id=2016087
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016086
https://www.carc.unm.edu/irs/show_project.html?project_id=2016086
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016084
https://www.carc.unm.edu/irs/show_project.html?project_id=2016084
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016083
https://www.carc.unm.edu/irs/show_project.html?project_id=2016083
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016081
https://www.carc.unm.edu/irs/show_project.html?project_id=2016081
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016080
https://www.carc.unm.edu/irs/show_project.html?project_id=2016080
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016079
https://www.carc.unm.edu/irs/show_project.html?project_id=2016079
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016078
https://www.carc.unm.edu/irs/show_project.html?project_id=2016078
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016077
https://www.carc.unm.edu/irs/show_project.html?project_id=2016077
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016076
https://www.carc.unm.edu/irs/show_project.html?project_id=2016076

2016074 Implicit Monte Carlo Simulation of Thermal Radiation Transport Prinja, Anil K.

2016073 Implicit Monte Carlo Simulation of Transport Phenomena Prinja, Anil K.

2016072 simulations for LEGEND neutrino-less double beta decay experiment Gold, Michael S

2016070 Transcriptomic Analysis of Drosophila Neuroblasts Johnston, Christopher

2016068 Simulation of quantum many-body systems Miyake, Akimasa

2016066 microRNA and epigenetic control on gene expression Liang, Fu-Sen

2016063 Genomic Data Analysis Guo, Yan

2016062 Simulation of terawatt x-ray free electron lasers Freund, Henry

2016061 Evolutionary convergence in mainland and island lizards Poe, Steve

2016059 Curucmin modulation of amyloid-beta peptide interaction with lipid membranes Chi, Eva Y

2016058 Atlantic salmon gill microbiome Salinas, Irene
2016057 High-fidelity Model for Wind Farms Lee, Sang

2016056 Monte Carlo Simulation of Stochastic Multiplying Systems O'Rourke, Patrick F

2016053 Nanophotonic metasurfaces Acosta, Victor

2016052 Genomic analyses of cellular quiescence Osley, Mary Ann

2016051 Performance Optimization of LANL Multi-Physics Applications Bridges, Patrick G

https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016074
https://www.carc.unm.edu/irs/show_project.html?project_id=2016074
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016073
https://www.carc.unm.edu/irs/show_project.html?project_id=2016073
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016072
https://www.carc.unm.edu/irs/show_project.html?project_id=2016072
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016070
https://www.carc.unm.edu/irs/show_project.html?project_id=2016070
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016068
https://www.carc.unm.edu/irs/show_project.html?project_id=2016068
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016066
https://www.carc.unm.edu/irs/show_project.html?project_id=2016066
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016063
https://www.carc.unm.edu/irs/show_project.html?project_id=2016063
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016062
https://www.carc.unm.edu/irs/show_project.html?project_id=2016062
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016061
https://www.carc.unm.edu/irs/show_project.html?project_id=2016061
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016059
https://www.carc.unm.edu/irs/show_project.html?project_id=2016059
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016058
https://www.carc.unm.edu/irs/show_project.html?project_id=2016058
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016057
https://www.carc.unm.edu/irs/show_project.html?project_id=2016057
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016056
https://www.carc.unm.edu/irs/show_project.html?project_id=2016056
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016053
https://www.carc.unm.edu/irs/show_project.html?project_id=2016053
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016052
https://www.carc.unm.edu/irs/show_project.html?project_id=2016052
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016051
https://www.carc.unm.edu/irs/show_project.html?project_id=2016051

2016050 Investigating the impact of metal contaminants in environmental microbial populations Cerrato, Jose M.

2016049 COMPUTATIONAL INVESTIGATION OF PARAMETER SPACE APPLICABLE TO NUCLEAR FACILITY SAFEGUARDS USING
THE UNM CENTER FOR ADVANCED RESEARCH COMPUTING

Arthur, Edward D

2016047 Multiscale Mechanistic Model to Study Nanotherapy Delivery in Tumors Bearer, Elaine L

2016046 Designing of Fuel Performance Experiments to be Performed Using the Annular Research Reactor (ACRR) Lee, Youho

2016045 Model building the HELP physical unclonable function Plusquellic, Jim F

2016044 Genomic Comparisons of Multipartite Symbiosis: Understanding the metabolic basis of parasitism Kamel, Bishoy S

2016042 QIIME analyses of microbial sequences acquired from saliva samples Carroll-Portillo, Amanda

2016041 Deterministic and Bayesian Seismic source inversion involves Appelo, Daniel EA
2016040 Consequence-based Impact Rating using ANSYS Moreu, Fernando

2016039 Machine-Learning Design of Novel Photovoltaic Materials Based on Conceptual Understanding of Electronic
Structure Calculations

Talipov, Marat R

2016036 Melt migration in continental interiors Roy, Mousumi
2016035 Monte Carlo Simulation for Weak Neutron Sources Goss, Vanessa
2016034 Programmable Nanowalkers: Models and Simulations Stefanovic, Darko
2016033 Deep Learning and Differential Geometry Huang, Hongnian

2016032 Analyzing Neuronal Coordination during a task of Behavioral Flexibility in a Model of Fetal Alcohol Spectrum
Disorder

Brigman, Jonathan L

2016031 “Mountain Lions on the Edge: Integrating Conservation into Urban Planning through Predictive Modeling” Milne, Bruce T

2016029 Discrete Element Modeling of Drilled Shafts in Granular Materials Ng, Tang-Tat

2016028 Exploration of optical rogue wave phenomena in dielectrics as a function of the intrinsic randomness or disorder Mafi, Arash

2016026 Differential Splicing by Sex in DNA Repair Genes Berwick, Marianne
2016021 Atlantic salmon microbiome Salinas, Irene
2016019 Small Area Population Estimates Rhatigan, Robert
2016018 Differential Gene Expression in Cancer Trujillo, Kristina

https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016050
https://www.carc.unm.edu/irs/show_project.html?project_id=2016050
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016049
https://www.carc.unm.edu/irs/show_project.html?project_id=2016049
https://www.carc.unm.edu/irs/show_project.html?project_id=2016049
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016047
https://www.carc.unm.edu/irs/show_project.html?project_id=2016047
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016046
https://www.carc.unm.edu/irs/show_project.html?project_id=2016046
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016045
https://www.carc.unm.edu/irs/show_project.html?project_id=2016045
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016044
https://www.carc.unm.edu/irs/show_project.html?project_id=2016044
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016042
https://www.carc.unm.edu/irs/show_project.html?project_id=2016042
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016041
https://www.carc.unm.edu/irs/show_project.html?project_id=2016041
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016040
https://www.carc.unm.edu/irs/show_project.html?project_id=2016040
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016039
https://www.carc.unm.edu/irs/show_project.html?project_id=2016039
https://www.carc.unm.edu/irs/show_project.html?project_id=2016039
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016036
https://www.carc.unm.edu/irs/show_project.html?project_id=2016036
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016035
https://www.carc.unm.edu/irs/show_project.html?project_id=2016035
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016034
https://www.carc.unm.edu/irs/show_project.html?project_id=2016034
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016033
https://www.carc.unm.edu/irs/show_project.html?project_id=2016033
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016032
https://www.carc.unm.edu/irs/show_project.html?project_id=2016032
https://www.carc.unm.edu/irs/show_project.html?project_id=2016032
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016031
https://www.carc.unm.edu/irs/show_project.html?project_id=2016031
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016029
https://www.carc.unm.edu/irs/show_project.html?project_id=2016029
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016028
https://www.carc.unm.edu/irs/show_project.html?project_id=2016028
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016026
https://www.carc.unm.edu/irs/show_project.html?project_id=2016026
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016021
https://www.carc.unm.edu/irs/show_project.html?project_id=2016021
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016019
https://www.carc.unm.edu/irs/show_project.html?project_id=2016019
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016018
https://www.carc.unm.edu/irs/show_project.html?project_id=2016018

2016050 Investigating the impact of metal contaminants in environmental microbial populations Cerrato, Jose M.

2016049 COMPUTATIONAL INVESTIGATION OF PARAMETER SPACE APPLICABLE TO NUCLEAR FACILITY SAFEGUARDS USING
THE UNM CENTER FOR ADVANCED RESEARCH COMPUTING

Arthur, Edward D

2016047 Multiscale Mechanistic Model to Study Nanotherapy Delivery in Tumors Bearer, Elaine L

2016046 Designing of Fuel Performance Experiments to be Performed Using the Annular Research Reactor (ACRR) Lee, Youho

2016045 Model building the HELP physical unclonable function Plusquellic, Jim F

2016044 Genomic Comparisons of Multipartite Symbiosis: Understanding the metabolic basis of parasitism Kamel, Bishoy S

2016042 QIIME analyses of microbial sequences acquired from saliva samples Carroll-Portillo, Amanda

2016041 Deterministic and Bayesian Seismic source inversion involves Appelo, Daniel EA
2016040 Consequence-based Impact Rating using ANSYS Moreu, Fernando

2016039 Machine-Learning Design of Novel Photovoltaic Materials Based on Conceptual Understanding of Electronic
Structure Calculations

Talipov, Marat R

2016036 Melt migration in continental interiors Roy, Mousumi
2016035 Monte Carlo Simulation for Weak Neutron Sources Goss, Vanessa
2016034 Programmable Nanowalkers: Models and Simulations Stefanovic, Darko
2016033 Deep Learning and Differential Geometry Huang, Hongnian

2016032 Analyzing Neuronal Coordination during a task of Behavioral Flexibility in a Model of Fetal Alcohol Spectrum
Disorder

Brigman, Jonathan L

2016031 “Mountain Lions on the Edge: Integrating Conservation into Urban Planning through Predictive Modeling” Milne, Bruce T

2016029 Discrete Element Modeling of Drilled Shafts in Granular Materials Ng, Tang-Tat

2016028 Exploration of optical rogue wave phenomena in dielectrics as a function of the intrinsic randomness or disorder Mafi, Arash

2016026 Differential Splicing by Sex in DNA Repair Genes Berwick, Marianne
2016021 Atlantic salmon microbiome Salinas, Irene
2016019 Small Area Population Estimates Rhatigan, Robert
2016018 Differential Gene Expression in Cancer Trujillo, Kristina

CARC supports all sorts of computation.
We can support yours too.

(TLDR)

https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016050
https://www.carc.unm.edu/irs/show_project.html?project_id=2016050
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016049
https://www.carc.unm.edu/irs/show_project.html?project_id=2016049
https://www.carc.unm.edu/irs/show_project.html?project_id=2016049
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016047
https://www.carc.unm.edu/irs/show_project.html?project_id=2016047
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016046
https://www.carc.unm.edu/irs/show_project.html?project_id=2016046
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016045
https://www.carc.unm.edu/irs/show_project.html?project_id=2016045
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016044
https://www.carc.unm.edu/irs/show_project.html?project_id=2016044
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016042
https://www.carc.unm.edu/irs/show_project.html?project_id=2016042
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016041
https://www.carc.unm.edu/irs/show_project.html?project_id=2016041
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016040
https://www.carc.unm.edu/irs/show_project.html?project_id=2016040
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016039
https://www.carc.unm.edu/irs/show_project.html?project_id=2016039
https://www.carc.unm.edu/irs/show_project.html?project_id=2016039
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016036
https://www.carc.unm.edu/irs/show_project.html?project_id=2016036
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016035
https://www.carc.unm.edu/irs/show_project.html?project_id=2016035
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016034
https://www.carc.unm.edu/irs/show_project.html?project_id=2016034
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016033
https://www.carc.unm.edu/irs/show_project.html?project_id=2016033
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016032
https://www.carc.unm.edu/irs/show_project.html?project_id=2016032
https://www.carc.unm.edu/irs/show_project.html?project_id=2016032
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016031
https://www.carc.unm.edu/irs/show_project.html?project_id=2016031
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016029
https://www.carc.unm.edu/irs/show_project.html?project_id=2016029
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016028
https://www.carc.unm.edu/irs/show_project.html?project_id=2016028
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016026
https://www.carc.unm.edu/irs/show_project.html?project_id=2016026
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016021
https://www.carc.unm.edu/irs/show_project.html?project_id=2016021
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016019
https://www.carc.unm.edu/irs/show_project.html?project_id=2016019
https://www.carc.unm.edu/irs/edit_project.html?&project_id=2016018
https://www.carc.unm.edu/irs/show_project.html?project_id=2016018

Basics of HPC Systems

•Parallelism within CPUs (Central Processing Units)
•Parallelism within GPUs (Graphics Processing
Units)
•Parallelism of CPUs and GPUs
•Parallelism of whole computers

CARC Systems

• Monitoring
• Ganglia.alliance.unm.edu
• Xdmod.hpc.unm.edu

• QuickBytes: http://carc.unm.edu/user-support-
2/User%20support%20at%20a%20glance.html

• Help
• http://help.carc.unm.edu
• help@carc.unm.edu

http://ganglia.hpc.unm.edu/
https://xdmod.hpc.unm.edu/
http://carc.unm.edu/user-support-2/User%20support%20at%20a%20glance.html
http://carc.unm.edu/user-support-2/User%20support%20at%20a%20glance.html
http://help.carc.unm.edu/

Some useful Linux commands

• ssh username@wheeler.alliance.unm.edu
• scp myfile.txt username@wheeler.unm.edu:~
• scp username@wheeler.unm.edu:~/myfile.txt .
• CyberDuck, or WinScp
• CARC supports secure file transfer (SFTP), so choose that protocol if

you use a graphical transfer program.
• Rsync
• ls –lah
• find . –name “*.txt”

mailto:username@wheeler.unm.edu:~

Compartmentalization

• A challenge running large multi-user systems is supporting all the
different software required for hundreds of projects.

• Compartmentalization keeps user software isolated.

• We use 3 general methods at CARC: Environment Modules,
Anaconda, and Singularity (these are the current standards so what
you learn here will translate to other HPC centers)

Environment Modules

• Open a secure shell on wheeler is you haven’t already

$ ssh username@wheeler.alliance.unm.edu

• Display your environment variables
$ env

• All the modules do is set the environment variables for different
software

mailto:username@wheeler.alliance.unm.edu

Environment Modules

• Let’s load the R module so we can use it.

$ module list

$ module load r Choose the appropriate R module (use tab complete !!)

$ R

Environment Modules

• Let’s load the R module so we can use it.

$ module list (Again)

Will take a while!
$ module avail (to show all available modules)
$ module spider <software name> (to find a software package)

https://lmod.readthedocs.io/en/latest/010_user.html

Conda

• CARC staff have to install the software and create the environment
modules you just saw.
• Anaconda provides an environment manager called conda that allows

you to install the software you need into your home directory.
• Conda works with python, perl, R, and theoretically any language

Conda – Hands On

• Let’s setup a a local install of numpy
$ module load anaconda
$ conda –V
$ conda create -n numpy numpy

Wait a while – introduce yourselves to your neighbor… believe there is
a reason we are doing this…

Conda – Hands On

• Let’s setup a a local install of numpy
$ module load anaconda
$ conda –V
$ conda create -n numpy numpy

Now we have defined a conda environment called numpy and installed
numpy in our home directories.

We can now use numpy in the next program.

Conda – Hands On

• Let’s setup a a local install of numpy
$ module load anaconda
$ conda –V
$ conda create -n numpy numpy

• Now we can load the environment
$ source activate numpy

Conda – Hands On

Conda just installs the software under ~/.conda

$ conda env list

$ source deactivate numpy

FYI: https://pythonclock.org/

https://pythonclock.org/

Docker and Singularity

• Singularity allows you to load converted Docker images on HPC systems.
• Docker is not secure so singularity locks down access to the host machine.

• Docker containers allow you to configure a whole virtual operating system
environment (e.g. your software needs Ubuntu but Wheeler runs CentOS).

• Convert your docker image to singularity and you can run the container. There is
a “QuickByte” (short tutorial on the CARC website) on how to do this:

http://carc.unm.edu/usersupport2/User%20support%20at%20a%20glance.html

http://carc.unm.edu/user-support-2/User%20support%20at%20a%20glance.html

15 mins Break

Submitting Jobs

Hands On

Download some example code that we can use to practice

Enter the following:

cd ~
git clone https://lobogit.unm.edu/CARC/workshops.git

Multiuser Systems and Batch Scheduling

• TORQUE (PBS)
• MAUI

Head Node

User 1

User 2

Workflow

Program B

Compute Node 01

Compute Node 02

Compute Node 04

Compute Node 05

Program A

PBS Script A

PBS Script B

Shared filesystems – All nodes can access the same programs and write output

Compute Node 03

Head Node

User 1

User 2

Workflow

Program B

Scheduler
(MAUI)

Compute Node 01

Compute Node 02

Compute Node 04

Compute Node 05

Program A

PBS Script A

PBS Script B

Shared filesystems – All nodes can access the same programs and write output

Compute Node 03

Head Node

User 1

User 2

Workflow

Program B

Scheduler
(MAUI)

Compute Node 01

Compute Node 02

Compute Node 04

Compute Node 05

Program A

PBS Script A

PBS Script B

Shared filesystems – All nodes can access the same programs and write output

Compute Node 03

Head Node

User 1

User 2

Workflow

Program B

Scheduler
(MAUI)

Compute Node 01

Compute Node 02

Compute Node 04

Compute Node 05

Program A

PBS Script A

PBS Script B

PBS Script A

PBS Script B

Shared filesystems – All nodes can access the same programs and write output

Compute Node 03

Head Node

User 1

User 2

Workflow

Program B

Scheduler
(MAUI)

Compute Node 01

Compute Node 02

Compute Node 04

Compute Node 05

Program A

PBS Script A

PBS Script B

PBS Script A

PBS Script B

Shared filesystems – All nodes can access the same programs and write output

Compute Node 03

Program A

Program A

Program A

Program B

Program B

Interactive Mode

$ qsub -I -l nodes=1:ppn=1 –q debug

PBS Variables Provide Information

• In interactive mode try:

$ echo $PBS_O_WORKDIR

$ echo $PBS_NODEFILE

$ cat $PBS_NODEFILE

MAUI Scheduler

The scheduler looks at all the currently queued and running jobs and runs a backfill
algorithm.

Smaller jobs in terms of number of CPUs and requested time are easier to schedule since
there is more likely to be space for them.

However the longer a job is in the queue the more priority it gets. This way every job runs
eventually.

PBS Variables

• There are lots:

$PBS_ENVIRONMENT $PBS_JOBID $PBS_MOMPORT $PBS_NP $PBS_O_HOME
$PBS_O_LOGNAME $PBS_O_QUEUE $PBS_O_WORKDIR $PBS_VERSION $PBS_GPUFILE
$PBS_JOBNAME $PBS_NODEFILE $PBS_NUM_NODES $PBS_O_HOST $PBS_O_MAIL
$PBS_O_SERVER $PBS_QUEUE $PBS_VNODENUM $PBS_JOBCOOKIE $PBS_MICFILE
$PBS_NODENUM $PBS_NUM_PPN $PBS_O_LANG $PBS_O_PATH. $PBS_O_SHELL
$PBS_TASKNUM $PBS_WALLTIME

Writing a Torque Batch Script
•Make a directory called ~/workshop
• Edit a new file in the workshop

directory, name it
workshop_example.pbs

• This REQUESTS time on the debug
queue. We are asking for 1 nodes, and
8 cores on that node. We promise our
job won’t take more than 5 minutes.
Email me when the begins, aborts,
and ends (bae). Combine standard out
and standard error into one file.

#!/bin/bash

#PBS -q debug
#PBS -l nodes=1:ppn=8
#PBS -l walltime=00:5:00
#PBS -N ws_example
#PBS -j oe
#PBS -m bae
#PBS –M my_email@unm.edu

Writing a Torque Batch Script
#!/bin/bash

#PBS -q debug
#PBS -l nodes=1:ppn=8
#PBS -l walltime=00:5:00
#PBS -N ws_example
#PBS -j oe
#PBS -m bae
#PBS –M my_email@unm.edu

echo $HOSTNAME

Everything that comes after the PBS preamble is executed on the first node you were allocated.

Writing a Torque Batch Script
#!/bin/bash

#PBS -q debug
#PBS -l nodes=1:ppn=8
#PBS -l walltime=00:5:00
#PBS -N ws_example
#PBS -j oe
#PBS -m bae
#PBS –M my_email@unm.edu

echo $HOSTNAME

qsub pbs/workshop_example.pbs

Writing a Torque Batch Script
#!/bin/bash

#PBS -q default
#PBS -l nodes=2:ppn=8
#PBS -l walltime=00:05:00
#PBS -N G09_H2O
#PBS -j oe
#PBS -m bae
#PBS -M my_email@unm.edu

INPUT_MOLECULE=$PBS_O_WORKDIR/data/H2O.gjf
OUTPUT_FILE=$PBS_O_WORKDIR/H2O.log

module load gaussian/g09
g09 $INPUT_MOLECULE $OUTPUT_FILE

qsub pbs/gaussian.pbs

Managing your jobs

To submit your batch job:

$ cd workshops/intro_workshop
$ ls
pbs code data
$ qsub pbs/workshop_example.pbs

Writing a Torque Batch Script

Whatever is written to standard out and standard error is saved to <Job Name>.o<Job ID>
When the job ends.

If you want to see the output live, start your job with:

$ qsub -k oe <script_name.pbs>

Writing a Torque Batch Script
#!/bin/bash

#PBS -q debug
#PBS -l nodes=2:ppn=8
#PBS -l walltime=00:05:00
#PBS -N ws_example
#PBS -j oe
#PBS -m bae
#PBS –M my_email@unm.edu

cat $PBS_NODEFILE

Everything that comes after the PBS preamble is executed on the first node you were allocated.

qsub pbs/workshop_example_2.pbs

A program that calculates pi using the area under a
curve
The program checks the value of pi calculated against
the
value provided by numpy

import time
import sys
import numpy as np # Value of PI to compare to

def Pi(num_steps): #Function to calculate pi
step = 1.0 / num_steps
sum = 0
for i in range(num_steps):

x = (i + 0.5) * step
sum = sum + 4.0 / (1.0 + x * x)

pi = step * sum
return pi

Check that the caller gave us the number of steps to
use
if len(sys.argv) != 2:

print("Usage: ", sys.argv[0], " <number of steps>")
sys.exit(1)

num_steps = int(sys.argv[1],10);

Call function to calculate pi
start = time.time() #Start timing
pi = Pi(num_steps)
end = time.time() # End timing

Print our estimation of pi, the difference from numpy's
value, and how long it took
print("Pi = %.20f, (Diff=%.20f) (calculated in %f secs with
%d steps)" %(pi, pi-np.pi, end - start, num_steps))
sys.exit(0)

#!/bin/bash
#PBS -q debug
#PBS -l nodes=1:ppn=2
#PBS -l walltime=00:05:00
#PBS -N calc_pi_serial
#PBS -j oe
#PBS -M youremailaddress@unm.edu

module load anaconda
source activate numpy

cd $PBS_O_WORKDIR
python code/calcPiSerial.py

qsub pbs/calc_pi_serial.pbs

Monitoring Jobs
Shows an overview of the queue status
$ qgrok

Lists all the jobs in the queue
$ qstat

Shows the resources requested by the jobs
$ qstat –a

Just the jobs submitted by a particular user
$ qstat -u <username>

-n shows the nodes being used by a running job
$ qstat -n -u <username>

-f gives detailed information about a particular job
$ qstat -f <job id>

Watch is a useful command that automatically updates the command that follows
$ watch qstat -n -u <username>

To see an estimate of how long it will be before a job starts and
completes, enter:

$ /usr/local/maui/bin/showstart <job ID>

Embarrassingly Parallel Problems

• Perfect case!
• All computation is independent so speedup is equal to the number of

additional computers you throw at the problem.
• Especially good for generating lots of samples when you have a

stochastic algorithm, simulation, or want to benchmark performance.

Job Arrays
#!/bin/bash

#PBS -q debug
#PBS -l nodes=1:ppn=8
#PBS -l walltime=00:05:00
#PBS -N ws_example
#PBS -j oe
#PBS -m bae
#PBS –M my_email@unm.edu
#PBS –t 1-12%3

echo “$HOSTNAME - $PBS_ARRAYID”

-t allows you to schedule many jobs at once. -t 1-12%3 means run 12 jobs but only schedule 3 at a time.

qsub pbs/workshop_example_3.pbs

Writing a Torque Batch Script
#!/bin/bash

#PBS -q default
#PBS -l nodes=1:ppn=8
#PBS -l walltime=00:05:00
#PBS -N calc_pi_array
#PBS -j oe
#PBS -m bae
#PBS -M my_email@unm.edu
#PBS -t 1-12%3

module load anaconda
source activate numpy

NUM_STEPS="${PBS_ARRAYID}000"
echo "Calculating pi with $NUM_STEPS…"
cd $PBS_O_WORKDIR
python code/calcPiSerial.py $NUM_STEPS

Everything that comes after the PBS preamble is executed on the first node you were allocated.

qsub pbs/calc_pi_array.pbs

GNU Parallels – Input Driven

$ module load parallel
#module load parallel #Load the appropriate version for the cluster on which you are running

$ find . –name “*.txt”

$ parallel echo ::: A B C ::: D E F

$ find . –name “*.txt” | parallel echo {}

$ find . –name “*.txt” | parallel echo {.}

$ find . –name “*.txt” | parallel echo {/.}

GNU Parallels – Monitoring Progress
• A logfile of the jobs completed so far can be

generated with --joblog:
$ parallel --joblog $PBS_O_WORKDIR/job.log exit ::: 1 2 3 0
$ cat $PBS_O_WORKDIR/job.log

• The log contains the job sequence, which host the
job was run on, the start time and run time, how
much data was transferred, the exit value, the
signal that killed the job, and finally the command
being run.

We are running “exit” so we can fake jobs that succeed and fail.

GNU Parallels – Resuming Jobs
• With a joblog GNU parallel can be stopped and later pickup where

it left off. It it important that the input of the completed jobs is
unchanged.

• Why would you want to do this…???

$ parallel --joblog $PBS_O_WORKDIR/job.log exit ::: 1 2 3 0

$ cat $PBS_O_WORKDIR/job.log
$ parallel --resume --joblog $PBS_O_WORKDIR/job.log exit ::: 1
2 3 0 0 0

$ cat $PBS_O_WORKDIR/job.log

GNU Parallels – Resuming Jobs
• The previous command just ran the jobs that didn’t finish
• This command reruns jobs that has a failing exit code
$ parallel --joblog $PBS_O_WORKDIR/job.log exit ::: 1 2 3 0

$ cat $PBS_O_WORKDIR/job.log
$ parallel –resume-failed --joblog $PBS_O_WORKDIR/job.log exit ::: 1 2
3 0 0 0

$ cat $PBS_O_WORKDIR/job.log

We are running “exit” so we can fake jobs that succeed and fail.

GNU Parallels

• GNU Parallel is what you should be
using to run many experiments, solve
many independent instances of a
problem.

• If you have 1000 input files and 100
CPUs allocated parallel will do all the
scheduling for you to process those
files.

GNU Parallels

• If you have 1000 input files and 100 CPUs allocated
parallel will do all the scheduling for you to process
those files.

• Remember though: Torque assigns you resources,
parallels makes use of them. You have to use
--sshloginfile $PBS_NODEFILE

• To be sure parallels is using resources you were
actually allocated

GNU Parallels – Environments

Recall that software may require particular environments. GNU
Parallel by itself loses the environment in which it was called.

Use env_parallel to keep the environment. Need to tell it what
shell you are using.

source `which env_parallel.bash`

Then you can use env_parallel exactly like parallel.

#!/bin/bash

#PBS -l nodes=2:ppn=8
#PBS -l walltime=00:05:00
#PBS -N calc_pi_parallel
#PBS -j oe
#PBS -M youremailaddress@unm.edu

module load parallel-20170322-gcc-4.8.5-2ycpx7e
module load anaconda
source activate numpy

source $(which env_parallel.bash)

cd $PBS_O_WORKDIR
env_parallel --sshloginfile $PBS_NODEFILE --joblog $PBS_JOBNAME.joblog "python
$PBS_O_WORKDIR/code/calcPiSerial.py {}" :::: data/step_sizes.txt

qsub pbs/calc_pi_parallel.pbs

GNU Parallels
Create a temporary unique directory in which to store the summary output for each job
TEMP_DIR=$(mktemp -d -p $PBS_O_WORKDIR)

Setup Gurobi solver environment
module load parallel #Load the appropriate version for the cluster on which you are running
module load gurobi
module load anaconda
source activate gurobi

source `which env_parallel.bash`

Use find to make a list of all the .graph files to pass to the integer program solver.
Divide the work up among compute nodes using the GNU parallel tool. Use a local /tmp work directory.
":::: -" reads from stdin (find ... *.graph) to {1}, ":::: $EPSILON_VALUES_PATH" reads from the
epsilon parameter file to {2}, {1/.} fetches the input base filename only
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog –resume-failed --sshloginfile $PBS_NODEFILE --workdir $(mktemp -d)
"python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2} $TEMP_DIR/{1/.}.txt $TIME_LIMIT
$SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8
$PBS_O_WORKDIR/ip_progress.joblog –-resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

Let’s try to parse this command together…

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8
$PBS_O_WORKDIR/ip_progress.joblog –-resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

Pass the paths to all the files with a graph extension in
the directory specified in the user shell variable
$GRAPH_INPUT_DIR to env_parallel.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog –-resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

Pipes the paths to all the files with a graph extension in
the directory specified in the user shell variable
$GRAPH_INPUT_DIR to env_parallel.

The piped input is mapped to the first
parameter to parallel referred to with “-”.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

The piped input is mapped to the first
parameter to parallel referred to with “-”.

… and referred to with {1}.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

The second set of parameters is read from a file. In this
example the path to the values is specified by the user
variable $EPSILON_VALUES_PATH.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

The second set of parameters is read from a file. In this
example the path to the values is specified by the user
variable $EPSILON_VALUES_PATH.

… and referred to with {2}.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

We are using env_parallel which passes the current
shell environment to the jobs. In this example the user
code uses shell variables.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

Specifies the number of jobs to run on each node.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog –-resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

Record the progress to a file.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

Record the progress to a file. …and tell parallels to rerun any
failed jobs listed in the joblog
(those where the exit value not
equal to 0).

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

Tell parallels which nodes we were
allocated to run our jobs.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

--workdir is set to a temporary directory.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

The command that will be run in each parallel job. This
program takes 6 arguments. Parallel will generate a job
for all combinations of input parameter {1} and {2}.
Argument 4 specifies an output path based on the
input file name {1}. {1/.} gets just the input file
basename.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

Notice “::::” rather than “:::”. Four colons tells parallels
that a list of parameters comes next.

GNU Parallels
find $GRAPH_INPUT_DIR -name '*.graph' | env_parallel --jobs 8 --joblog
$PBS_O_WORKDIR/ip_progress.joblog --resume-failed --sshloginfile $PBS_NODEFILE --
workdir $(mktemp -d) "python $PBS_O_WORKDIR/ip/solve_ip.py {1} $IP_METHOD {2}
$TEMP_DIR/{1/.}.txt $TIME_LIMIT $SOLUTION_OUTPUT_DIR" :::: - $EPSILON_VALUES_PATH

So in this example, parallels will spawn a job for every combination of
input file and value in the $EPSILON_VALUES_PATH file.

Parallels records its progress in a joblog file so it can pick up where it
left off if the torque job runs out of time before all the jobs are
complete, and the torque job needs to be resubmitted.

15 Min Break

File Systems

Home Directory (~): Limited space (200 GB), backed up, slowest
access times.

Scratch (~/wheeler-scratch): Fast. Lots of space (up to 1 TB
usage), store data that you can
regenerate here.

Temp (/tmp): on Wheeler these are RAM drives. Very fast but
usage decreases available memory.

MPI: Message Passing Interface
When programs need to run on many processors but also
communicate with one another.

Here the parallel version of calcPi needs to communicate the
partial sums computed by each process so they can all be added
up.

To communicate we will use the MPI library:

$ module load anaconda
$ conda create –n mpi_numpy mpi mpi4py numpy

import time
import sys
import numpy as np # Value of PI to compare to

#################### SETUP MPI - START ####################
from mpi4py import MPI #Import the MPI library
comm = MPI.COMM_WORLD #Communication framework
root = 0 #Root process
rank = comm.Get_rank() #Rank of this process
num_procs = comm.Get_size() #Total number of processes
########################### END ############################

#Distributed function to calculate pi
def Pi(num_steps):

step = 1.0 / num_steps
sum = 0
for i in range(rank, num_steps, num_procs): # Divide sum among

processes
x = (i + 0.5) * step
sum = sum + 4.0 / (1.0 + x * x)

mypi = step * sum

Get that partial sums from all the processes, add them up, and give
to the root process

pi = comm.reduce(mypi, MPI.SUM, root)
return pi

#Main function
Check that the caller gave us the number of steps to use
if len(sys.argv) != 2:

print("Usage: ", sys.argv[0], " <number of steps>")
sys.exit(1)

num_steps = int(sys.argv[1],10);

#Broadcast number of steps to use to the other processes
comm.bcast(num_steps, root)

Call function to calculate pi
start = time.time() #Start timing
pi = Pi(num_steps) # Call the function that calculates pi
end = time.time() # End timing

If we are the root process then print our estimation of pi,
the difference from numpy's value, and how long it took
print("Pi = %.20f, (Diff=%.20f) (calculated in %f secs with %d
steps)" %(pi, pi-np.pi, end - start, num_steps))

#!/bin/bash

#PBS -l nodes=2:ppn=8
#PBS -l walltime=00:05:00
#PBS -N calc_pi_mpi
#PBS -j oe
#PBS -M youremailaddress@unm.edu

module load openmpi-3.1.3-gcc-4.8.5-5fyhoph
module load anaconda
source activate mpi_numpy

cd $PBS_O_WORKDIR
mpirun -machinefile $PBS_NODEFILE -n $PBS_NP python code/calcPiMPI.py

qsub pbs/calc_pi_mpi.pbs

Flexible Access to CARC

• There are several ways to access CARC:

91

Terminal access is the
traditional way to interact
with our systems.

Flexible Access to CARC

92

But users can also
access CARC’s systems
through MATLAB and
JupyterHub…

Look for the CARC
QuickBytes on how to
use these:

https://github.com/UNM-CARC/QuickBytes/blob/master/README.md

https://github.com/UNM-CARC/QuickBytes/blob/master/README.md

93

Parallel MATLAB CARC

Code and Data

Results

94

Parallel MATLAB
• Change hardware without changing code

• Example: ODE Parameter Sweep

95

Parallel MATLAB

96

Parallel MATLAB - GPUs

Plot solutions to the Wave PDE

97

Parallel MATLAB - GPUs

•https://wheeler.alliance.unm.edu:8000

•https://taos.alliance.unm.edu:8000

•https://xena.alliance.unm.edu:8000

https://wheeler.alliance.unm.edu:8000/
https://taos.alliance.unm.edu:8000/
https://wheeler.alliance.unm.edu:8000/

99

100

101292929

102

103

10434

10534

10635

