
Ignorance is Not Bliss:

An Analysis of Central-Place Foraging Algorithms

Abhinav Aggarwal,1 Diksha Gupta,1 William F. Vining,1 G. Matthew Fricke,∗,1,2 and Melanie E. Moses1,3,4

Abstract— Central-place foraging (CPF) is a canonical task
in collective robotics with applications to planetary exploration,
automated mining, warehousing, and search and rescue oper-
ations. We compare the performance of three Central-Place
Foraging Algorithms (CPFAs), variants of which have been
shown to work well in real robots: spiral-based, rotating-
spoke, and random-ballistic. To understand the difference
in performance between these CPFAs, we define the price
of ignorance and show how this metric explains our previ-
ously published empirical results. We obtain upper-bounds
for expected complete collection times for each algorithm and
evaluate their performance in simulation. We show that site-
fidelity (i.e. returning to the location of the last found target) and
avoiding search redundancy are key-factors that determine the
efficiency of CPFAs. Our formal analysis suggests the following
efficiency ranking from best to worst: spiral, spoke, and the
stochastic ballistic algorithm.

I. INTRODUCTION

Autonomous central-place foraging (CPF) is a funda-

mental task in collective robotics that involves the discov-

ery, collection, and transportation of targets to a collection

zone [1]. Central-Place Foraging Algorithms (CPFAs) have

recently received increased attention as resource collection

on other planets, moons, and asteroids by robots is planned

by space agencies to enable human exploration. Mining by

autonomous vehicles and inventory collection in automated

warehouses are essentially CPF tasks in that they require

efficient collection and transportation of targets distributed

within an area. Search and rescue, collection of bomb

fragments for analysis, and robotic agriculture also motivate

the study of distributed retrieval tasks. In biology, immune

systems searching for pathogens and ant-colonies searching

for targets can also be understood by analysing CPFAs.

Empirical work in real robots leads us to investigate

three simple algorithms: the Distributed Archimedean Spiral

Algorithm (SPIRALCPFA) [2], [3], Spoke Central Place

Foraging Algorithm (SPOKECPFA) [4], and Random Bal-

listic Central Place Foraging Algorithm (RANDCPFA) [5].

Variants of these three algorithms performed well in the

NASA Swarmathon, a swarm robot foraging competition that

allowed us to make direct comparisons among many different

foraging algorithms in simulations and in physical robots [4].

Our formal analysis allows us to predict the performance

of these CPFAs for large areas and swarms of robots for

which experiments are currently impractical. We formalise

two principles observed in our empirical work: the im-

portance of site-fidelity (returning to the location of the
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last found target) and the adverse effects of oversampling

(repeatedly searching the same area). To aid our analysis,

we introduce the price of ignorance metric. This metric

is the ratio of the performance of a given algorithm to

that of an idealised omniscient algorithm†. This quantifies

the penalty paid by each algorithm for not knowing target

locations, which for the complete collection task is the major

determinant of CPFA performance. Our preliminary results

using this metric appeared in [8].

For each of the CPFAs, the proofs presented here provide

relative upper-bounds on the expected performance of teams

of robots. These upper-bounds suggest the ordering of algo-

rithm performance in idealised scenarios. To test whether the

ranking of upper-bounds holds, we run experiments using the

Autonomous Robots Go Swarming (ARGoS) [9] simulator

for each of the CPFAs. In combination, the asymptotic

analysis and ARGoS simulations give us insight into how

CPFAs perform in theory and in practice.

The technical details of our model along with our formal

analysis is presented in Section II. We describe our empirical

methods in Section III and present the results of our analysis

in Section IV. Finally we discuss our findings in Section V.

Related Work. Seminal contributions in search and dis-

tributed foraging have emerged in Operations Research [10],

Physics [11], Computational Geometry [12] and Robotics

[13]–[15] (among other areas). Central place foraging has

been of fundamental interest to researchers of Swarm In-

telligence because of its deep connections to social insect

behaviour [16]. Generating an optimal search path that

maximises the probability of detecting a target in non-trivial

environments within a fixed time-frame is NP-complete, and

minimising the mean time to detection is NP-hard [17], [18].

Therefore, search and CPF use heuristics.

Rybski et al. [19], and Hecker and Moses [15] demonstrate

that site-fidelity can dramatically reduce search times in robot

CPF in simulation and hardware experiments. So far this

effect has mostly been argued empirically [20], and our result

provides some of the first theoretical evidence to explain this

phenomenon.

Ghosh and Klein [21] provide a review of planar search

algorithms, which is a critical component of CPFAs. Spiral

†We note that the price of ignorance is similar to the notion of compet-

itiveness for online algorithms [6], which has been used in the context
of foraging in [7]. However, in our application, rather than measuring
competitiveness with respect to the amount of advice available (as in [7])
we measure competitiveness with respect to the knowledge of the locations
of resources and in the ability of the foraging algorithm to avoid repeatedly
searching the same locations in the foraging arena. Additionally, we assume
a uniformly random pile placement, which is different from the adversarial
setting often analysed for online algorithms.



TABLE I: Notation.

χ Price of ignorance Ts Total search time

Tt Total transport time Ttot Total foraging time

N Number of searchers s Robot speed

R Radius of the circular arena r Detection radius of robot

f Total number of targets m Total number of clusters

a Area of a single target ps Probability of site-fidelity

search has long been known to be an optimal search strategy

for individual agents searching for single targets, both from

the standpoint of computational geometry [22] and more

recently as a practical algorithm for real robots [23]. The

optimality of spiral search for multiple agents searching for

a line in the plane, and a point on a line, has also been proved

[12]. We have examined the generalisation to multiple robots

empirically [2]. To our knowledge this is the first formal

analysis of multi-agent spiral and spoke CPFAs.

Feinerman et al. [24], also argue in favour of deter-

ministic algorithms using formal analysis and establish a

lower bound of Ω
(

Rf +R2f/N
)

for the time it takes to

collectively forage adversarially placed targets. In a slightly

relaxed but biologically motivated setting of uniformly ran-

dom cluster placement around the collection zone, we show

that SPIRALCPFA circumvents this bound and takes only

O
(

R2/N +Rmax{f/N, 1}
)

time in expectation for com-

plete collection. In fact, Aggarwal et al. recently showed that

when the targets are clustered into a pile of diameter ∆, then

even under adversarial placement, there exists a single-agent

deterministic foraging strategy which can locate this pile in

Θ
(

R2/∆
)

time steps [25].

II. THEORETICAL ANALYSIS

A. Formal Model

We assume N holonomic robots, which are instructed to

search within a predefined area of radius R. We assume a

simple obstacle-free circular arena with a central, stationary

collection-zone. Robots begin at the collection zone and

transport the targets they discover to the collection zone. The

location of the collection zone, the number N (along with

a unique identifier per robot) and the radius of the arena is

known to all robots.

We distribute f targets evenly among m clusters. These

clusters are placed uniformly at random within the arena.

Targets are detectable when robots are within sensor range,

r, which defines an area a around each target. Targets are

stationary and depleted on collection. The number of targets

initially available for collection (and their locations) is fixed

but unknown to the robots.

We assume that the robots move at a constant speed, s
and can transport only one target at a time. After delivering

a target to the collection zone, in the SPIRALCPFA and

SPOKECPFA robots return to the point where the search

pattern was interrupted. In the RANDCPFA, robots choose

with some probability ps to either employ site-fidelity, i.e.

return to the location of the last target discovered, or al-

ternatively the robot chooses a random ballistic trajectory

away from the collection zone. Site-fidelity is inspired by

the behaviour of foraging ants [26]. Note that because the

SPIRALCPFA and SPOKECPFA return to the point in their

search pattern where they were interrupted by collecting a

target, they implicitly implement site-fidelity.

The robots do not communicate with each other in the

algorithms we study§ (apart from initial assignment of search

trajectories to each robot in the deterministic algorithms).

Robots can remember only the last location where they found

a target and the location of the collection zone.

Our formal model uses probabilistic, rather than adversar-

ial, target distributions and therefore allows tighter results

than those previously published. Table I summarises our

notation. We do not consider environmental effects, robot

failures, sensor or actuation error, collisions or congestion.

We have considered these factors in our previous work using

experiments with real robots and realistic simulations [3].

Collisions and congestion are considered in simulations in

Section III.

1) The Omniscient Central-Place Foraging Algorithm:

For our formal analysis, we need an appropriate metric to

measure relative success or failure. Our metric is the time

for complete collection achieved by each algorithm compared

to the time taken by an idealised omniscient algorithm. A

perfect CPFA, for complete collection, simply has to know

the location of each target a priori. The foraging time of

this omniscient algorithm is simply the time for the N robots

to travel directly to each target and return to the collection

zone. Robots search in parallel, and a centralised scheduling

algorithm can ensure that each target is assigned to only

one robot. The difference between the CPFAs performance

and the perfect algorithm is an effective measure of each

algorithms’ price of ignorance.

Each omniscient robot deploying this ideal algorithm will

take exactly 2d/s units of time to collect a target, which

is located at distance d from the collection zone. Since

the expected distance is d = 2R/3 to a target, the total

expected time for complete collection by this ideal algorithm

is 4Rf/(3Ns).
2) Price of Ignorance: For a particular problem instance

and a given foraging algorithm A, the price of ignorance

metric, denoted χ(A), is defined as the time taken by A
to collect all targets¶ divided by that taken by the perfect

algorithm:

χ(A) =
Ttot(A)

4Rf/(3Ns)
=

3NsTtot(A)

4Rf
(1)

Thus, χ(A) must be at least 1 for any algorithm, and the

most efficient algorithms are closest to 1. We summarise our

§As demonstrated by Rybski et al. [19], implementation of swarm com-
munication in real systems may not show the expected improvement.
Communication by real error-prone robots interpreting a noisy environment
can harm foraging performance by misdirecting foraging resources, a
phenomena termed misinformation cost by Pitonakova et al. [27].

¶We refer to this as the time to complete collection for algorithm A. Note
that we do not address the problem of protocol termination in this paper
and only measure the time until the last target is collected.



(a) DDSA (Square Spiral) (b) SPOKECPFA (c) RANDCPFA

Fig. 1: The three foraging strategies in simulation. Targets were initially placed in m = 2 clusters with 64 targets each. For

clarity only search paths are shown while transport paths are omitted.

main results for the price of ignorance of three CPFAs in

Table II.

B. Distributed Archimedean Spiral Algorithm

The SPIRALCPFA (Figure 2) uses interleaving

Archimedean spirals as robot search trajectories. Each

robot starts at the centre, if it finds a target, it takes it

back to the collection zone and then returns to the location

where it found the target and resumes its search. If the

robot hits an arena boundary, it completes the circuit at

the arena boundary and then stops foraging. The spiral

path is unique to each robot foraging in the arena and

collectively guarantees full arena coverage. Even though we

analyse a distributed Archimedean spiral, our results apply,

within a constant factor, to the square spirals of the DDSA

(Figure 1a) that we simulate in Section III.

The turning angles, θ, of robots following a distributed

Archimedean-spiral are defined to be parametric in time, t
such that θ = t + 2πi

N , resulting in the movement vector

〈x, y〉 = tNr
π 〈cos θ, sin θ〉. In our proofs we use the polar

representation.

Our main results are summarised in the theorem below.

Theorem 1. (SPIRALCPFA Analysis) The following holds

for foraging using SPIRALCPFA:

(1) Using only a single robot, the expected price of igno-

rance of SPIRALCPFA is at most 1 + 2.25R
rf − 1

2f .

(2) Multiple robots reduce the expected price of ignorance

of SPIRALCPFA to at most
√
2 + 1.67R

rf − N
2f . This

bound is tight up to constant factors.

Proof: [Proof Overview] The Archimedean Spiral is

governed by the equation ℓ = rθ
π , where (ℓ, θ) is the polar

co-ordinate pair of the spiral path traversed by the robot

and r is the detection radius of the robot. Note that 2r is

the separation between successive turns of the spiral, which

is maintained in order to provide complete coverage of the

arena.

1) Proof Sketch for Theorem 1 (1): Let (ℓmax, θmax) be

the angular co-ordinates for the last point of the spiral that

fits into the circular arena. Since the distance between (0, 0)
and (ℓmax, θmax) is R, we obtain θmax = Rπ

r . Let L be the

total length of the spiral path traversed by the robot. We can

Fig. 2: Foraging path for N = 3 bots using SPIRALCPFA,

with a cluster placed at the expected distance of 2R/3 from

the collection zone.

bound L as follows:

L ≤ r

π

∫ θmax

0

√

θ2 + 1 dθ ≤ r√
2π

θ2max <
3R2

r
(2)

Note that in SPIRALCPFA, every time the robot finds a

target, it first carries that target back to the collection zone

and then resumes its search from the point where it found

the last target. Thus, to calculate the effective search time

for a robot, we also consider the distance it needs to travel

back to the cluster from the collection zone for each of the

remaining f − 1 targets. This gives E[Ts(SPIRALCPFA)] =
L
s + (f − 1) 2R3s ≤ 3R2

rs + 2R(f−1)
3s . Note that the expected

transport time is 2Rf
3s , since it takes 2R

3s time in expectation to

transport a single target back to the collection zone. Hence,

the expected total completion time for SPIRALCPFA is at

most 3R2

rs + 2R(f−1)
3s + 2Rf

3s . This gives the expected price of

ignorance as stated in the theorem.

2) Proof Sketch for Theorem 1 (2): SPIRALCPFA can

be easily adapted for multiple robots by ensuring that each

robot travels along a separate Archimedean Spiral path in a

way that no two spirals ever intersect. For example, in the

steady state Figure 2 shows the foraging trajectory for N = 3
robots. Based on this, each of the robots will now traverse a

path where the distance between successive spirals is 2rN ,

governed by the equation ℓi =
rN
π θi+(i−1) rπ . Here, (ℓi, θi)

are the polar co-ordinates of the spiral path along which the

ith robot travels in the arena for i ∈ {1, 2, ..., N}.

Let (ℓi,max, θi,max) be the angular co-ordinates for the last

point traversed by the ith robot in the arena and Li be the

length of the Archimedean Spiral so traversed. Similar to the

analysis for a single robot, we obtain the following θi,max =
(

Rπ
r − (i− 1)

)

1
N and Li ≤ πR2/(

√
2rN).



To compute the expected total transport time, note that

each robot traverses an area of 2r per unit length of the path

it travels during the search. Thus, the total area traversed

by the ith robot is 2rLi ≤
√
2πR2/N . This corresponds to

√
2

N fraction of the arena and hence, the expected number of

targets collected by any robot is at most
√
2f
N . This way, we

obtain E[Tt(SPIRALCPFA)] = 2
√
2Rf

3Ns .

Next, we bound the expected total search time. Similar

to the discussion for the single robot, we can generalise the

total expected search time for multiple robots as follows:

E[Ts(SPIRALCPFA)] (3)

= max
i

(

Li

s
+ E[Tt(SPIRALCPFA)]i −

2R

3s

)

≤ max
i

(

Li

s

)

+ E[Tt(SPIRALCPFA)]− 2R

3s
(4)

Note that it holds that,

E[Ttot(SPIRALCPFA)] = E[Tt(SPIRALCPFA)] + E[Ts(SPIRALCPFA)]

This gives,

E[Ttot(SPIRALCPFA)] ≤ max
i

Li

s
+ 2E[Tt(SPIRALCPFA)]−

2R

3s

<
πR2

√
2rNs

+
4
√
2Rf

3Ns
−

2R

3s

The bound on the price of ignorance, as stated in the theorem,

then immediately follows.

C. Spoke Central Place Foraging Algorithm

In the SPOKECPFA (Figure 1b), the searchers move

radially away from the collection zone until they find a target

or reach the arena boundary. When a searcher returns to the

collection zone it increments its angle of departure slightly

for the next spoke. The radial search progresses around the

collection zone like the hands of a clock. This sweeping

mechanism will cover the entire space in the arena. This

reproduces the spoke strategy from the NASA Swarmathon;

however, in our analysis robots return along a different path

which we hypothesis will increase efficiency. The impact of

this difference is discussed in Section IV.

Successive turns ensure that the maximum distance be-

tween any two spokes is at most twice the detection radius

of the robots so that no cluster (even containing only one

target) will be undetected. Thus, we set the sweep angle

Θ = 4 sin−1(r/R) ≥ 4r/R for a total of 2π/Θ ≤ πR/(2r)
sweeps. Hence, the distance travelled by the robot to sweep

the entire arena is 4Rπ/Θ ≤ πR2/r (here, we assume that

the robot moves along one spoke and returns along the next

to further reduce the time by a factor of 2). Note that the

search time also takes into consideration the time taken by

the robot to travel back to the last location where it found

the target||, which in expectation is 2Rf/(3s), resulting in a

||Note that the time taken for the general case where multiple targets can
exist along a single spoke is never more than the bound obtained here.
This is because the distance covered by the robot that takes multiple trips
along a single spoke (for, say, f ′ targets along the spoke) until it reaches
the end of the arena is bounded from above by that covered by f ′ single
trips along different spokes.

total search time of at most πR2/rs+ 2Rf/(3s). The total

transport time for f targets is 2Rf/(3s), in expectation. With

multiple robots, the total time can be reduced by a factor

of N by assigning each robot to its own sector. Since the

clusters are uniformly distributed, each robot forages only

1/N fraction of the total number of targets, in expectation,

and covers a search area that is 1/N fraction of the whole

arena. Thus, expected price of ignorance of SPOKECPFA is
3πR
4rf + 1.

D. Randomised Ballistic Central-Place Foraging Algorithm

In RANDCPFA (Figure 1c), the robot chooses a random

direction from the collection zone and moves in a straight

line path along that direction until either a target is found

(either in direct line of sight or within the detection radius)

or a pre-specified distance is reached (which in this case

is the arena radius R). We state the main results for this

algorithm in the theorem below and provide a proof sketch

thereafter.

Theorem 2. (RANDCPFA Analysis) The following holds

for stochastic foraging using RANDCPFA:

(1) Using only a single robot, the expected price of igno-

rance of RANDCPFA is at most πR
r − 1

2 without site

fidelity or considering the effect of target depletion.

(2) Deploying site fidelity is expected to strictly decrease

the price of ignorance to at most m
f

(

πR
r

)

+ 1
2

(

1− m
f

)

,

without considering the effect of target depletion.

(3) The depletion of piles over time (due to foraging)

causes the price of ignorance to increase to at most
(2π ln 2)NR

r + 1
2 , without site fidelity.

(4) When both site fidelity and depletion effects are consid-

ered, the expected price of ignorance of RANDCPFA

is at most πR
r − N

2f .

Proof: We begin by computing the likelihood p of find-

ing at least one target cluster in a random chosen direction

from the collection zone (see Figure 3). It is trivial to see that

p = 1−
(

1− θ
2π

)m
, where θ = 2 sin−1

(

3
2R

(

r +
√

fa
mπ

))

.

This is because the target cluster is detected as soon as its

outer boundary falls within the detection radius of the robot

[5]. The inverse sine expression can be simplified to obtain

the following two bounds:

θ ≥ 3r

R
(5)

3r

2πR
≤ p ≤ 3mr

πR
(6)

1) Proof Sketch for Theorem 2 (1): If the target is not

found, the robot travels for 2R/s units of time before

reaching the collection zone again; otherwise, it travels for

expected 2R/(3s) units of time before finding a target

cluster. Assuming only a single robot in the system, recall

that with probability p, the robot finds at least one target

cluster. This causes the expected search time for the robot

to be the following:

Ts =
1

s

∞
∑

i=0

(1− p)ip

(

2Ri+
2R

3

)

=
2R(3− 2p)

3ps
(7)



Fig. 3: Relationship between the angular region in which the

cluster is detected in a single ballistic walk and the area of

the cluster and detection radius of the robot.

Without site fidelity, then to find all f targets, the robot needs

to make f such identical and independent trips, resulting in

a total search time of fTs.

Now, observe that once a target cluster is found, the robot

moves in a straight line path to the collection zone, costing
2R
3s units of time. Thus, the total transport time taken by

the robot to collect all targets in the arena is Tt = 2fR
3s .

Adding the total search time and the transportation time, we

obtain the total foraging time for RANDCPFA to be Ttotal =
fTs+Tt =

2Rf(3−2p)
3ps + 2fR

3s = 2Rf(3−p)
3ps . This allows us to

bound the price of ignorance using Equation (1) as follows:

χ (RANDCPFA) =

(

2Rf(3− p)

3ps

)(

3s

4Rf

)

=
3− p

2p
(8)

Using the lower bound on p from Equation (6), we obtain

the the result as stated.

We obtain a tighter bound using a coupon-collector ar-

gument in Section II-E. However, it becomes non-trivial to

extend this argument for the case of site-fidelity and target

depletion and hence, we continue the remaining proofs in

this theorem using the same technique as discussed above.

2) Proof Sketch for Theorem 2 (2): We say that the robot

exhibits site fidelity ps ∈ [0, 1] if each time it finds a target

at a particular site, it returns to that site for its next trip with

probability ps. Otherwise, it chooses a random direction to

move. We then denote χ(ps) to be the price of ignorance

given site fidelity ps.

Ignoring the effects of target depletion, the expected search

time to find a target cluster for the first time is the same as be-

fore. However, for each of the remaining f
m−1 targets in that

pile, the robot takes in expectation ps(2R/(3s))+(1−ps)Ts

units of time. This is because the robot returns to the same

location with probability ps and performs a Ballistic search

otherwise. Hence, the expected search time to completely

consume a target cluster with site fidelity is Ts + (f/m −
1) (ps(2R/(3s)) + (1− ps)Ts), which can be rearranged to

(1 + (f/m− 1)(1− ps))Ts + ps(f/m− 1)(2R/(3s)). The

transport time for these targets remains the same. Hence, the

total expected time taken by the robot to collect all the targets

in the arena is (mps + f(1− ps))Ts+ps (f −m) 2R
3s . Using

Equations (6) and (7), we show that the expected price of

ignorance is at most m
f

(

πR
r

)

+ 1
2

(

1− m
f

)

, as stated in the

theorem.

3) Proof Sketch for Theorem 2 (3): For mathematical

simplicity, we perform our analysis assuming only one target

per pile (f = m) and no site fidelity (so that each robot

collects m/N piles in expectation). We begin with computing

how the probability of finding target clusters degrades as they

are depleted. Let pn be the probability that in a single trip of

the robot, at least one target cluster is encountered, assuming

the arena currently has n unexplored target clusters. Then,

pn ≈ nθ
2π (when θ is sufficiently small compared to 2π/m).

Given this value of pn, the (expected) search time is at most
2R(1+2pn)
3s(1−pn)

to find a single target cluster. Thus, to find the

time to search for all the m/N target clusters, we use an

integral approximation and assume N < m to obtain the

following (here T depl
s denotes the total (expected) search

time with depletion effects and qn = 1− pn):

T depl
s ≤

m/N
∑

k=1

(

2R(1 + 2pm−kN )

3s(1− pm−kN )

)

≤ 8πmR2 ln 2

3rs
(9)

Using Equation (5), we obtain the following:

χ ≤ 3Ns

4Rm

(

8πmR2 ln 2

3rs
+

2Rm

3Ns

)

≤ (2π ln 2)NR

r
+

1

2
(10)

4) Proof Sketch for Theorem 2 (4): Let pf be the proba-

bility of discovering the target cluster in one Ballistic walk

by the robot when the number of targets in the target cluster

is f . We know that pf = θf/2π, where θf has the same

form as in Equation (5). Let TNoSF
s,f be the expected time

(without site fidelity) for as single robot to find the target

cluster when it has f targets. Note that a single robot collects

1/N fraction of the total targets in expectation. Then, we

obtain the following:

TNoSF
s,f =

f/N
∑

i=1

TNoSF
s,i =

f/N
∑

i=1

2R(3− 2pi)

3spi
≤ 4Rf

3Ns

(

πR

r
− 1

)

(11)

where the last inequality follows from the bound in Equa-

tion (6). Adding the effect of site fidelity (where ps is the

probability that the robot will return to the same location that

it last located a target), we denote by Ts,f (ps) the expected

search time in this case. Then, we obtain the following:

Ts,f (ps) = TNoSF
s,f +

(f/N)−1
∑

i=1

(

2Rps
3s

+ TNoSF
s,i (1− ps)

)

≤ 4Rf

3Ns

(

πR

r
− 1

)

+
2Rf

3Ns
− 2R

3s
(12)

Note that the bound above holds for ps = 1 (perfect site

fidelity). Adding the expected transport time, this gives

the upper bound on the total expected foraging time of

RANDCPFA as 4Rf
3Ns

(

πR
r

)

− 2R
3s . This causes the price of

ignorance to be at most πR
r − N

2f .

E. Tighter Analysis for RANDCPFA

We now discuss a method for obtaining a tighter bound on

the expected foraging time of the RANDCPFA, ignoring the

effects of target depletion and site fidelity. Observe that in

the proof for Theorem 2, we assumed that the expected time

to collect f targets is at most f times the expected time
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Fig. 4: Theory and simulation agree in the ordering of CPFA performance as a function of arena size (N = 10, r = 0.2,

f = 256, and m = 4). (a) Comparison of theoretical predictions. (b) Simulations performed using the ARGoS simulator.

For large arenas SPIRALCPFA performs much better than RANDCPFA and better than SPOKECPFA in simulation and in

theory. For the linear fits R2 = 0.842 for SPIRALCPFA, R2 = 0.897 for SPOKECPFA and R2 = 0.841 for the RANDCPFA.

All arena dimensions are given in meters.

to collect a single target. In this simplification, the robots

may make multiple passes over the entire arena to achieve

complete collection.

However, observe that as soon as the entire arena is visited

once, all targets would have been collected and no further

foraging is required. This allows us to use the expected time

to cover the entire arena as a tighter upper bound on the

search time for RANDCPFA, compared to that obtained in

Theorem 2 (1). To obtain this bound, we bound the number

of distinct ballistic trajectories by 2π
θ , where θ is the same as

that in Equation (5). Since each trajectory can be traversed

multiple times independently and identically, the expected

number of times each trajectory is traversed at least once

is at most 4π
θ log

(

2π
θ

)

, which is obtained similar to the

analysis of coupon collector problem [28]. The maximum

time it takes to complete each trajectory is 2R
s , and hence,

a tighter upper bound on the total foraging time is now

at most
(

2R
s

) (

4π
θ

)

log
(

2π
θ

)

+ 2Rf
3s ≤ 8πR2

3sr log
(

2πR
3r

)

+
2Rf
3s . This allows us to bound the price of ignorance by
2πR
rf log

(

2πR
3r

)

+ 1
2 , which is significantly lower that in

Theorem 2 (1) (see Figure 5a for an empirical comparison).

III. EXPERIMENTAL METHODS

To validate the formal analysis, we ran experiments us-

ing the ARGoS simulator for a variant of each algorithm

implemented for a square arena with N = 10 robots. The

“foot-bot” robot, programmed to move like the iAnt robot

from [15], was used for all experiments. The experiments

measured the time to complete collection in an environment

with f = 256 targets arranged in m = 4 clusters, of 64
items each, placed uniformly at random in the arena. Five

replicates were run for each arena size. Robots were able to

detect and pick up a target if they came within r = 0.2m of

it. For the RANDCPFA experiments, the robot always use

site fidelity (ps = 1). Results from these experiments are

shown in Section IV Figure 4b.

IV. SIMULATION RESULTS

Figure 4a shows the relative price of ignorance for each

algorithm given in Section II. As predicted, our experiments

show that SPIRALCPFA has the lowest cost of ignorance for

large arenas with greater cost of ignorance for SPOKECPFA

and greatest for RANDCPFA. We also observe that the

variance in price of ignorance is very low for SPIRALCPFA

in simulation whereas for SPOKECPFA and RANDCPFA the

price of ignorance is highly variable, demonstrating that the

performance of these algorithms is sensitive to the placement

of clusters.

Figure 5a shows that performance of RANDCPFA in

simulation closely matches the tighter bound given in sec-

tion II-E. Figure 5b shows that the simulation results for

SPIRALCPFA match the formal analysis well. SPOKECPFA,

however, performs considerably worse than the theoretical

predictions.

Two factors help to explain why simulation performs

worse than the theoretical bound. In the analysis, robots

search different spokes on the outbound and return trips, but

in our implementation, each robot’s return spoke is the same

as the outbound one, increasing search time by up to a factor

of 2. Additionally, while the theory assumes that transport of

targets is equally divided among the robots, our simulations

used a relatively small number of robots and clusters. Since

the number of clusters was smaller than the number of robots,

the robots could not fully parallelize the search.

V. DISCUSSION AND CONCLUSION

Our theoretical analysis and experiments in simulation

help to explain the effectiveness of spiral algorithms ob-

served in previous simulations and experiments with physical

robots [2], [3]. Our simulation results are consistent with

those predicted by our formal analysis. We show that SPI-

RALCPFA is expected to outperform both SPOKECPFA and

RANDCPFA. We attribute this to the non-redundancy in the

search path of SPIRALCPFA, where the robot continuously
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Fig. 5: Comparison of observed price of ignorance to the upper bounds derived in Section II. (a) Theory vs. simulation for

RANDCPFA showing the improvement given by the analysis in Section II-E. (b) Combination of Figure 4a and Figure 4b

focusing on the agreement between theory and simulation in demonstrating that the SPIRALCPFA performs better than the

SPOKECPFA for larger arenas and matches the theoretical predictions very well. All arena dimensions are given in meters.
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Fig. 6: Fraction of area explored by the robot over time. SPI-

RALCPFA never re-searches the same area, which reduces

the price of ignorance.

eliminates area to search for targets with every step and no

two robots have overlapping search areas. This is not the

case for SPOKECPFA which repeatedly visits points near

the centre of the arena (Figure 1b) . Overlap in search is

even worse in RANDCPFA since each successive ballistic

walk is made independently of previously foraged areas. We

plot an approximation of the fraction of area eliminated for

search over time for the three algorithms in Figure 6. We

observe that RANDCPFA ignores all previously obtained

information and performs each ballistic walk as if it were

foraging in a completely unknown arena. On the other

hand, SPIRALCPFA shows a monotonic increase in the

information gained about what parts of the arena do not

contain any more targets and chooses never to traverse those

areas again. SPOKECPFA increases more slowly over time

due to overlap near the centre.

The theoretical analysis reveals why target depletion and

site fidelity are important to consider in RANDCPFA. As

targets are collected, clusters become smaller and it becomes

more challenging for the robots to find them. To the best

of our knowledge, we make the first attempt to model the

effect of depletion in collaborative foraging and prove that

TABLE II: Summary of various analytical results in this

paper. See Table I for notation. Ranked according to the least

upper-bound on expected performance (lower is better).

Algorithm Rank Collection Time Price of Ignorance

Ideal 1
4Rf

3Ns
1

SPIRALCPFA 2 πR2

√
2Nrs

− 2R
3s

+ 4
√

2Rf

3Ns
3πR

4
√
2rf

− N
2f

+
√
2

SPOKECPFA 3 πR2

Nrs
+ 4Rf

3Ns
3πR
4rf

+ 1

RANDCPFA 4
4πR2f

3Nrs
− 2R

3s
πR
r

− N
2f

when target depletion is taken into account, one can expect

the price of ignorance to increase with N . In RANDCPFA

a larger number of robots on one hand collect targets

faster (by working in parallel), but they also deplete the

arena at a rate which significantly slows down foraging as

time progresses. The counter-intuitive result that the price

of ignorance increases with N is because the omniscient

algorithm pays no cost for search, while RANDCPFA pays

an additional cost as clusters shrink and therefore become

harder to find. Site fidelity compensates for target depletion

because robots only have to find each cluster once. This is

evident in the analysis because when both site fidelity and

depletion are accounted for, the price of ignorance no longer

increases with N (compare Theorem 2 (3) with (4)).

Thus, our analysis shows that site fidelity strongly coun-

teracts the effect of target depletion which greatly improves

performance of RANDCPFA. Empirically, target depletion

makes finding targets exponentially more difficult over-time

[29]. Site fidelity has been observed to improve foraging

performance in stochastic algorithms in simulation and in

biological field studies [15], [20], [26], [30]. Our formal

analysis explains this phenomenon and suggests that site fi-

delity may be an important component of stochastic foraging

algorithms more generally.

The effect of target depletion is further exacerbated in

simulation because robots may bore a ‘tunnel’ through



the clusters, resulting in two smaller clusters that must be

rediscovered before all resources can be collected, an effect

not explicitly captured by our formal model. We note that the

deterministic algorithms considered in this paper are resistant

to this effect of target depletion by design (for example

Figure 1a). This is because the search trajectories cover the

entire arena in a fixed time and do not revisit previously

foraged areas while searching for more targets. Thus, when

targets are depleted, they have no effect on the time taken

by ongoing search for other targets.

The theoretical results presented in Table II allow us to

not only quantify the efficiency of each algorithm, but also

help us to understand the relative impact of search cost and

transport cost. We provide insight into how site fidelity, a

common strategy among social insects [20], mitigates the

effect of target depletion on foraging time. Our analysis helps

quantify the importance of keeping oversampling in search to

a minimum, which is an argument in favour of deterministic

search for limited-memory systems.
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