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ABSTRACT

A key factor limiting the performance of central place foraging
algorithms is the awareness of the agent(s) about the location of
food items around the nest. We study the ratio of howmuch time an
ignorant agent takes relative to an omniscient forager for complete
collection of food items in the arena. This effectively quantifies
the penalty each algorithm pays for not knowing (or choosing to
ignore information gained about) where the resources are located.
We model the effect of depletion of food items from the arena
on the foraging efficiency over time and analytically verify that
returning to the location of the last food item found strongly helps
in counteracting this effect. To the best of our knowledge, these
results have only been empirically argued so far.
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1 INTRODUCTION

Foraging of food items around a central location is a well motivated
problem in understanding biological systems like ant colonies as
well as gaining theoretical insight into distributed collaborative
search algorithms. To better understand the effects of overlaps in
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search trajectories and depletion of food items from the arena, we
define the Price of Ignorance as a measure of how much time an
ignorant agent takes relative to an omniscient forager for complete
collection of food items in an arena.

We analyze two algorithms: a deterministicDistributed Archi–

medes Spiral Algorithm (DASA) [4, 7, 12] in which the agents
move along interleaved Archimedes spirals [10] around the nest;
and a randomized Ballistic Central Place Foraging Algorithm

(BalCPFA) [15] in which the agents move radially away from the
nest until they find a food item or hit the arena boundary. Upon
returning to the nest, each agent independently chooses a uniformly
random direction for the next ballistic run.

Our analysis shows that preferential foraging around the loca-
tion of the last found food item (also called site fidelity) significantly
lowers the foraging time whereas food depletion and large over-
laps in search trajectories have an adverse effect. This interplay of
exploration vs. exploitation, thus, defines the quality of foraging.

Our Model. We assume a continuous circular arena of radius R
around a fixed central location, called the nest1. This arena consists
of F individually collectible food items that are arbitrarily clustered
into piles. We assume that each pile is placed independently and
uniformly at random in the arena2. Our system consists of N agents
that move synchronously at a constant unit speed and have a vision
radius Rv i.e. the food item can be detected by any agent that is
within a distance of Rv from it. We assume that the agents know R
and have unique IDs in {1, . . . ,N}. However, the locations of the
piles and the number of food items in each pile is unknown to the
agents. The agents can navigate back to the nest from any location
in the arena but cannot remember more thanΘ(1) previously visited
locations. We assume that each agent can pick up only one food
item at a time and does not communicate with any other agent
during the algorithm. We do not model unexpected environmental
effects, agent failures, and external noise in this paper.

Site Fidelity. In BalCPFA, we say that an agent employs site
fidelity with parameter ps ∈ [0, 1] if after returning to the nest with
1While most existing work assumes an infinite discrete grid [6, 14], we note that
assuming a continuous arena with Euclidean distances only changes the runtime of
our algorithms by a factor of

√
2 compared to the Manhattan distance. The assumption

of finite arena is biologically motivated since most ant species do not travel very large
distances before giving up their search [8, 9].
2We compare our model and results with those for the adversarial setting considered
in the ANTS model by Feinerman and Korman [6] in Section 3.
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a food item, with probability ps , the agent chooses to return to the
location of this item for the next ballistic run. Otherwise, the agent
moves along a uniformly random direction.

Omniscient Foraging. Our analysis is relative to an omniscient
foraging scenario in which each agent is initially equipped with
the exact locations of all food items in the arena and given perfect
navigation capabilities to forage these items in the smallest possible
time. This ideal algorithm assumes information about the location
of the next available food item that no other agent is currently
scheduled/planning to collect. The total expected distance covered
until complete collection is 4RF/3N. This is because each pile is at
an expected distance of 2R/3 from the nest. Thus, it takes 2(2R/3) =
4R/3 time steps to collect each food item.

The Price of Ignorance. With respect to the ideal foraging de-
scribed above, we define the price of ignorance, denoted χ , of a
given foraging algorithm A as χ (A) = 3NDA/4RF, where DA is
the maximum distance covered by any agent in A for complete
collection of food items in the arena. This metric helps quantify the
cost of being oblivious to the (or choosing to ignore any gained)
knowledge about the resources and their location in the arena.3

2 OVERVIEW OF OUR RESULTS

We now summarize our main results and present an overview of
our approach, wherever possible. We refer the reader to the full
version of our paper [1] for more details of our proofs .

Cooperative Foraging Speeds up Deterministic Search. We prove
that the total time taken by DASA is O

(
R2

N + R
⌈ F
N
⌉)

and that

χ (DASA) <
⌈

5
3Rv F − N

2RF

⌉
R +

√
2. This implies that increasing

the number of agents helps reduce the foraging time for DASA. We
attribute the improvement in the performance with multiple agents
to the fact that the search trajectories are non-overlapping and the
location of each food item found helps to continuously eliminate
part of the arena for the search that follows (see Figure 1). Addi-
tionally, we show that χ (DASA) ≥

⌈
π

8Rv F − 9N
4RF

⌉
R + 1, implying

that the bound above is tight up to constant factors.

BalCPFA has a Higher Foraging Time. BalCPFA can be shown
to have a higher foraging time compared to DASA, with high prob-
ability, using a result about random arc distances on a unit circle
by King and Saia [11]. They prove that whenM points are placed
uniformly at random on the circumference of a unit circle, then
the maximum arc distance between any two neighboring points is
Θ(logM/M) and the minimum distance is Θ(1/M2), with probabil-
ity at least 1 −O(1/M).

For a single adversarially placed pile of diameter ∆ inside the
arena, the number of ballistic runs required to locate this pile is

3We note that this measure is similar to the notion of competitiveness for online al-
gorithms [5], which has been used in the context of foraging in [6]. However, in our
application, we do not measure competitiveness with respect to the amount of advice
available for the value of N (as in [6]). Rather, from a biological and engineering per-
spective, we measure competitiveness with respect to the knowledge of the distribution
of resources around the nest and in the decision of the foraging algorithm to avoid
overlaps in the search trajectories. Additionally, we assume a uniformly random pile
placement, which is significantly different from the adversarial setting often for online
algorithms.
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Figure 1: Plot of the fraction of area eliminated by a single

agent (Rv = 1,R = 20) vs. search time while foraging the

arena using DASA and BalCPFA.

Ω(∆ log∆), with high probability. Thus, a total of Ω
(
R
⌈
F∆ log∆
RvN

⌉)
time steps are needed for complete collection of food items from
this pile. Clearly, this is higher than that of DASA.

When the pile is placed uniformly at random instead, we show
that when agents do not deploy site fidelity (i.e. when ps = 0), it
holds that χ (BalCPFA) = Ω(⌈R/Rv ⌉), which, asymptotically, is at
least F times higher than the upper bound for DASA. Intuitively,
this is because BalCPFA chooses to completely ignore all the infor-
mation obtained while collecting the first food item while it forages
for the second one. Thus, each food item is essentially searched as
if it were independently and uniquely placed in the arena, causing
large overlaps in the search trajectory (see Figure 1).

Food Depletion has Adverse Effects. If the arena contains mul-
tiple piles, the time to complete collection is affected by the rate
of depletion of these piles. This is because as these piles become
smaller (due to collection of food items in them) and their number
decreases, it becomes more challenging for the agents to find the
next available food item. To the best of our knowledge, we make
the first attempt to model the effect of such a behavior in collabo-
rative foraging and prove that when food depletion is taken into
account, one can expect a multiplicative blowup up to Ω(MN) in
the price of ignorance, whereM is the number of piles. We model
this behavior using a probabilistic recurrence relation and compute
the expected foraging time for BalCPFA with depleting piles to
obtain our result [1]. Intuitively, while a larger number of agents
on one hand collect food items faster (by working in parallel), they
also deplete the arena at a faster rate, thus, significantly slowing
down locating the remaining food items as time progresses.

Site Fidelity Helps Keep Randomized Foraging Efficient. Our final
result proves that deploying site fidelity strongly counteracts the
effect of food depletion and helps keep BalCPFA (and thus, other
randomized foraging schemes) efficient. This has mostly been em-
pirically argued so far [13] and our result provides one of the first
theoretical evidence into this phenomenon. Intuitively, site fidelity
is the behavior of the agent in which it chooses to return to the



location of the last food item it found. We show that when the
agents deploy perfect site fidelity (i.e. with ps = 1). the expected
price of ignorance of BalCPFA is at most

⌈
π
Rv

− N
2FR

⌉
R, which is a

significant improvement over the bound obtained above. Note that
this does not imply that the agent only moves along one direction
indefinitely. When the pile is exhausted, the ballistic run in this
direction will go all the way to the arena boundary and return to
the nest without any food item in sight. This will cause the agent
to move along a random direction for the next ballistic run since
site fidelity only applies when a food item is found.

Communication Enhances Foraging Efficiency. We further argue
that communication among the agents, and not only working in par-
allel, can help collect the food items faster. Similar to the approach
by Steels [16] using crumbs and that by Hecker and Moses [9] us-
ing virtual waypoints, we envision a pedagogical scenario with
BalCPFA in which agents have a special marker which they can
place in the arena at any time. This marker is only visible to the
nearby agents and once detected, indicates a desired direction to
them. Assuming only a single pile in the arena, when some agent
finds a food item in this pile, it places the marker near the nest in
the correct direction and all other agents then move along this di-
rection to collect the remaining food items. To further optimize the
algorithm, all agents can search the first food item in parallel and
the one that finds it first places the marker. The expected distance
covered in this marker-based algorithm is O

(
R2

N + R
⌈ F
N
⌉)
, which

closes the gap between the asymptotic performance of BalCPFA
and DASA.

Note that this form of communication is different from deploying
site fidelity since only one agent returns to the last visited location
in the latter. In biological systems, such a communication has been
conjectured to happen by laying pheromones that the other agents
can pick up and follow [9].

3 DISCUSSION

In this section, we briefly compare our approach to the work by
Feinerman and Korman [6] for the ANTS problem. Taking motiva-
tion from the distribution resources in the wild [8], we assume a
random food placement in the arena in contrast to the adversarial
setting considered in [6]. Moreover, in the adversarial case, if the
adversary is allowed to place the food items in an online manner, a
lower bound of Ω

(
R
⌈
F + RF

N
⌉)

can be proved for complete collec-
tion of food items in the arena using Yao’s minimax principle [17]
and the Feinerman-Korman bound in [6]. In our case, however, we
show that DASA takes onlyO

(
R2

N + R
⌈ F
N
⌉)

time in expectation for
complete collection, which is significantly better than the bound
above. Additionally, while only the time to locate the first food
item is considered in [6], we study the effect of clustering of food
items in into piles and the time for complete collection of resources.
In fact, it can be shown that when the food items are clustered
into a pile of diameter ∆, then even under adversarial placement,
there exists a single-agent deterministic foraging strategy which
can locate this pile in Θ

(
R2/∆

)
time steps [2, 3].

From a biological perspective, we provide one of the first analyt-
ical insights into naturally observed phenomena of site fidelity [13]

and argue in favor of determinism for collaborative foraging. The
formal analysis shows that deterministic spirals are best in theory,
but simulations and our prior work show that stochastic algorithms
can work as well in practice, but with significantly higher variance.
Moreover, from a theoretical perspective, our analysis helps quan-
tify the importance of keeping overlaps in search trajectories to a
minimum, which is an argument in favor of deterministic search
for limited-memory systems (which was also argued empirically
by [7, 12, 15]). For stochastic search, our results favor walks with
site fidelity as a solution to balancing the effects of spatial sparsity
that arises over time (due to depletion).
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