
Chapter 2

Using RuleBuilder to Graphically Define and Visualize
BioNetGen-Language Patterns and Reaction Rules

Ryan Suderman, G. Matthew Fricke, and William S. Hlavacek

Abstract

RuleBuilder is a tool for drawing graphs that can be represented by the BioNetGen language (BNGL),
which is used to formulate mathematical, rule-based models of biochemical systems. BNGL provides an
intuitive plain text, or string, representation of such systems, which is based on a graphical formalism.
Reactions are defined in terms of graph-rewriting rules that specify the necessary intrinsic properties of the
reactants, a transformation, and a rate law. Rules also contain contextual constraints that restrict application
of the rule. In some cases, the specification of contextual constraints can be verbose, making a rule difficult
to read. RuleBuilder is designed to ease the task of reading and writing individual reaction rules or other
BNGL patterns required for model formulation. The software assists in the reading of existing models by
converting BNGL strings of interest into a graph-based representation composed of nodes and edges.
RuleBuilder also enables the user to construct de novo a visual representation of BNGL strings using
drawing tools available in its interface. As objects are added to the drawing canvas, the corresponding
BNGL string is generated on the fly, and objects are similarly drawn on the fly as BNGL strings are entered
into the application. RuleBuilder thus facilitates construction and interpretation of rule-based models.

Key words Rule-based modeling, Software, Visualization, Graph rewriting, Chemical kinetics, Dyna-
mical systems, Systems biology, Mathematical modeling, Drawing tool

1 Introduction

Rule-based modeling languages provide a formal means for
describing and simulating dynamical phenomena in cellular and
molecular biology [1]. These languages are typically used to for-
mulate models of cellular regulatory networks [2]. The strength
and novelty of rule-based models are in their ability to provide
concise representations of systems exhibiting combinatorial com-
plexity [3, 4]. Instead of reactions or equations, rule-based models
are composed of reaction rules, which typically define chemical
transformations of parts of macromolecules (i.e., sites), as well as
the rates at which the transformations occur. Rules are written in a
text-based format that is both human and machine readable. Rules
are composed of patterns that denote specific molecular moieties.

William S. Hlavacek (ed.),Modeling Biomolecular Site Dynamics: Methods and Protocols, Methods in Molecular Biology, vol. 1945,
https://doi.org/10.1007/978-1-4939-9102-0_2, © Springer Science+Business Media, LLC, part of Springer Nature 2019

33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-1-4939-9102-0_2&domain=pdf
https://doi.org/10.1007/978-1-4939-9102-0_2


As an example of how the rule-based modeling framework simpli-
fies the model-building process, consider a scaffold protein with
three binding sites, each of which is specific for a unique kinase
protein:

Scaf(s1,s2,s3)

K1(s)

K2(s)

K3(s)

If each kinase binds a different site on the scaffold protein then
the maximum number of scaffold-containing biochemical species
that can form is eight. Assuming that the rates of interaction
between each kinase and the scaffold are independent of the scaf-
fold’s interactions with the other kinases, a model can be defined in
terms of only three reaction rules:

rule_1: Scaf(s1)+K1(s) <-> Scaf(s1!1).K1(s!1) k1_on,k1_off

rule_2: Scaf(s2)+K2(s) <-> Scaf(s2!1).K2(s!1) k2_on,k2_off

rule_3: Scaf(s3)+K3(s) <-> Scaf(s3!1).K3(s!1) k3_on,k3_off

For each rule, note the omission of binding sites that do not
participate in the interaction. For example, the first rule only spe-
cifies that site s1 should be unbound (the absence of binding
notation associated with a site name indicates the absence of a
bond) and so the rule implicitly defines all possible reactions
between the scaffold and kinase K1 regardless of the scaffold’s
interaction with the other kinases. Rule-based modeling frame-
works allow for all possible species to be reached through multiple
applications of rules representing interactions in a system to some
initial set of biochemical species (termed seed species) while main-
taining a relatively simple representation of the entire system.

The above rules are written in the BioNetGen language
(BNGL) syntax [5]. BNGL was originally developed as a method
for automatic generation of reaction networks by determining all
possible reactions given a set of seed species and a set of reaction
rules. Models written in BNGL can be converted into a system of
ordinary differential equations and numerically integrated or con-
verted into a Markov chain describing stochastic chemical kinetics
and simulated using a kinetic Monte Carlo (KMC) algorithm
[6]. Furthermore, network-free KMC methods involving direct
application of rules to molecular objects using pattern-matching
algorithms allow simulation without needing to enumerate the sets
of possible reactions and chemical species [7]. This flexibility, along
with available BNGL-compatible model building and analysis tools
[8–11], makes rule-based modeling frameworks useful for simula-
tion and analysis of dynamical systems in biology.

34 Ryan Suderman et al.



While arguably more legible than traditional reaction- or
ODE-based representations of reaction networks, reaction rules
for some systems can be lengthy and therefore difficult to parse by
eye. For example, the mast cell immune response to antigen
requires transphosphorylation of the kinase Syk, which occurs
when both a catalytically active Syk and a viable substrate Syk are
bound to distinct transmembrane receptors that are themselves
cross-linked by a multivalent antigen through interaction with
receptor-bound IgE antibody. A rule for Syk transphosphorylation
can be difficult to understand simply because the textual represen-
tation is lengthy (see Note 1):

Syk(SH2!1,kinase~a).FceRI_IgE(gamma!1,Fab!2).Ag(epitope!2,\

epitope!3).FceRI_IgE(Fab!3,gamma!4).Syk(SH2!4,Tyr~0) -> \

Syk(SH2!1,kinase~a).FceRI_IgE(gamma!1,Fab!2).Ag(epitope!2,\

epitope!3).FceRI_IgE(Fab!3,gamma!4).Syk(SH2!4,Tyr~P) k_cat

However, BNGL is based on a graphical formalism, so we can
easily represent such rules visually, making them far easier to read.

There are a few existing tools that facilitate visualization of
BioNetGen patterns as graphical objects. BioNetGen has its own
tool, the “visualize” command for use in the “actions” block of a
plain-text model file (i.e., a BioNetGen input file or BNGL file).
This command can be used to build model summary visualizations
in the form of contact maps or regulatory graphs [12]. It can also
output a file that includes the graphical representation of all rules in
a model, which must then be loaded into a visualization program
that can parse GraphML files. However, the “visualize” command
cannot draw arbitrary BNGL patterns (such as the left-hand side of
a rule alone, an observable pattern, or a chemical species string).
Another useful tool, VCell, employs the BioNetGen engine to
construct and simulate rule-based models using a graphical inter-
face [13]. However, it is not possible to rapidly visualize arbitrary
patterns or rules simply by copying and pasting a BNGL string into
the application. VCell requires a well-defined model (obtained
either by constructing the model through its graphical interface
or by importing a complete BNGLmodel file) prior to visualization
of patterns or rules or export of BNGL strings to a file.

Here, we present a tutorial on how to use a new stand-alone
version of RuleBuilder, which is an application for rapidly visualiz-
ing individual patterns and rules written in BNGL. Originally a part
of the Web-based resource GetBonNie [14], this tool is useful for
both understanding complex patterns or rules through visualiza-
tion and constructing BNGL strings de novo via the use of drawing
tools. Plain-text BNGL-formatted rules generated by RuleBuilder
can be directly inserted into the reaction rule block of a BNGL
model file and other patterns may be inserted into BNGL model
files as the pattern component of a seed species or observable

RuleBuilder 35



definition. Ultimately, RuleBuilder is a simple, minimal program
for drawing BioNetGen rules or pattern strings in a graph-based
format in accordance with the conventions of Faeder et al. [15]. In
the following sections, we will outline what is needed to install and
use RuleBuilder to read or write BNGL strings and provide exam-
ples illustrating its most notable features.

2 Materials

RuleBuilder is written in the Java programming language, and
therefore requires a Java Runtime Environment. The source code
is available under the BSD-3 license and is hosted at https://
github.com/RuleWorld/RuleBuilder. Compilation of RuleBuilder
requires version 8 of the Java Development Kit.

Once compiled, the program is packaged as an executable Java
Archive (JAR) and can be run on Unix-like platforms by using the
command line to navigate to the directory where the JAR is located
and executing the following command:

java -jar RuleBuilder.jar

It can also be run on Windows or macOS platforms simply by
double-clicking on the JAR file.

3 Methods

3.1 Visualizing

a BNGL Pattern or

Reaction Rule

One potential use of this tool is to assist in reading existing models
or to check BNGL patterns or reaction rules for semantic accuracy
while writing a model. In these cases, the textual representation
already exists, and can be entered into the input text box of the tool.
The string can be pasted or typed directly in the box marked
“BNGL String” and a graphical representation will be generated
on the fly. A simple example illustrating how RuleBuilder generates
a visualization of a reaction rule can be seen in Fig. 1.

RuleBuilder allows manual rearrangement of the graphical ele-
ments representing a BNGL pattern or rule. In some cases, patterns
may involve symmetric or chain-like polymers (Fig. 2a) and a well-
organized visualization can facilitate an understanding of the pat-
tern or rule. In these instances, manually arranging the graphical
elements can help prevent semantic mistakes (Fig. 2b). All that is
required for rearranging is to make sure that RuleBuilder is in
“Object Manipulation” mode as specified in the bottom left corner
of the RuleBuilder application window. If not in this mode, simply
clicking on the arrow icon on the far left of the toolbar will activate
this mode.

36 Ryan Suderman et al.

https://github.com/RuleWorld/RuleBuilder
https://github.com/RuleWorld/RuleBuilder


3.2 Graphically

Building a BNGL

Pattern or

Reaction Rule

RuleBuilder creates BNGL strings corresponding to user-defined
graphical objects. The toolbar at the top of the application window
as seen in all figures has a number of icons that toggle various
modes of operation (see Note 2). The fifth icon from the left
(a gray oval) activates the “Add Molecule” mode in which addi-
tional molecules can be added to the panel. When this mode is
active, clicking anywhere in the drawing canvas (taking care not to
drag the cursor) adds a new molecule with the default name “M()”
to the canvas. The name can be changed by modifying the string in
the text box at the bottom of the application window, or by activat-
ing “Object Manipulation” mode (by clicking on the arrow icon on
the top left) and then clicking on the name attached to the graphical
representation of the molecule.

Sites can be added to the molecule by choosing from one of the
three “Add Site” modes. These modes’ icons are second to fourth
from the left and create sites with three distinct bond states: sites
where bond state is arbitrary, sites with a bond to an unspecified
partner, or sites without a bond. If unbound sites are added, bonds
can be added later if necessary using the “Add Bond” mode. The
“Add Bond” mode is activated by clicking on the sixth icon from
the left in the toolbar. After the “Add Bond” mode is activated,
adding a bond requires clicking sequentially on both sites that are
intended to be represented as bound together. Sites may have
internal states. Internal states are added or changed in a manner
similar to changing molecule or site names; in accordance with
BNGL syntax, a “~” character should be added to separate the
site name from the state label (see Note 3).

Fig. 1 A visual representation of a simple rule, generated by a BNGL string based on the scaffold-kinase
example presented in the text

RuleBuilder 37



To build a rule, specific syntax denoting which molecules are
reactants and products is required. To specify molecules that are in
separate chemical species a “plus” sign must be placed between the
patterns (fifth icon from the right). Furthermore, reactants should
be placed to the left of an arrow (fourth and third icons from the
right) and products should be placed to the right (seeNote 4). Rate
law information is automatically incorporated into the constructed
BNGL string depending on the selected arrow (unidirectional or
bidirectional) and the string denoting the rule’s rate law can be
changed as one would change molecule or site names (see Note 5).

Fig. 2 (a) The default layout for representation of a multivalent antigen-bivalent antibody aggregate. The full
BNGL string (not fully visible in the text box) is IgE(Fab,Fab!0).IgE(Fab!1,Fab!2).Ag(s,s!
1,s!0). IgE(Fab!3,Fab).Ag(s!2,s!4,s!3).IgE(Fab!4,Fab). (b) A manually
arranged layout for the same aggregate visualized in panel (a)

38 Ryan Suderman et al.



BNGL rules involve a mapping of sites on the left-hand side to
sites on the right-hand side. This mapping is ordinarily inferred by
the BioNetGen software, but it may also be defined manually by a
user. RuleBuilder thus provides an “Add Mapping” mode (sixth
icon from the right) to allow construction of a mapping, which is
similar in operation to the “Add Bond”mode when creating bonds.
Note that sites can only be mapped from reactants to products,
meaning that an arrow operator must already be present in the rule
prior to using the graphical interface’s mapping feature.

3.3 A Rule-Building

Example

In this section, we will walk through building a rule using the
graphical interface, which will generate a BNGL string that can
then be copied into a BNGL file. The rule will characterize a
reversible interaction between a dimer (scaffold bound to a kinase)
and a monomer. The product is a trimer (scaffold bound to two
kinases on distinct binding sites). The BNGL string encoding the
rule is as follows:

Scaf(s1!1,s2).K1(s!1) + K2(s2) <-> \

Scaf(s1!1,s2!2).K1(s!1).K2(s2!2) k_on,k_off

It should be noted that at any time during the drawing process,
unwanted objects can be removed by simply clicking on the arrow
icon (switching to “Object Manipulation” mode), then clicking on
the unwanted object, and finally clicking the trash icon to delete the
selected object. Furthermore, the layout of graphical objects can be
adjusted at any time throughout the drawing process, and individ-
ual molecule objects can be resized by clicking on them in “Object
Manipulation” mode and dragging the boxes surrounding the
object.

First, we will construct the left-hand side of the rule given
above. We create three new molecules using “Add Molecule”
mode by clicking on the gray ellipse icon and then clicking three
times in the blank drawing canvas. You should see three ellipses
each labeled “M” and a string in the bottom text box reading:

M().M().M()

Note that RuleBuilder takes the molecules to be joined
together in a complex (see Note 6). Molecules that are in distinct
chemical species should be separated by the “þ” sign. Next, we will
change the names of the molecules simply by modifying the BNGL
string in the text box (Fig. 3a) to read as follows:

Scaf().K1().K2()

We will now add the necessary sites and the plus operator to
complete the rule’s left-hand side as described below. In our

RuleBuilder 39



example, we have a scaffold bound to a kinase interacting with a
second kinase. Therefore, the scaffold needs to have one free site
and one site bound to one kinase. To achieve this, we first activate
the “Add Site (unbound)” mode by clicking on the icon with the
full white circle and then we can add two sites to the scaffold and
one site each to the kinases by clicking twice on the scaffold object
and once on each kinase object. After renaming the sites we activate
the “Add Bond” mode and connect one site of the scaffold to the
site in kinase K1. Finally, we insert the plus sign by clicking on the
plus icon and clicking between the dimer and monomer patterns
(Fig. 3b).

Fig. 3 (a) Create a three-molecule pattern using the “Add Molecules” mode to begin construction of a rule. (b)
Sites and bonds are added to the pattern, providing context to define the reactants to which the rule applies.
(c) To complete the rule, products are added to the right-hand side of the rule to define the rule’s
transformation

40 Ryan Suderman et al.



From here, we can define a reversible reaction rule by clicking
on the double-arrow icon and then clicking on the drawing canvas
to the right of the second kinase molecule, K2. The application will
automatically add rate constants (forward and reverse, in this
order), which can be renamed if desired. We then construct the
right-hand side of the rule as we did the left but we add a bond
between the interacting kinase and scaffold to indicate the product
of the interaction. We also omit the plus operator that is present on
the left-hand side, because the scaffold and kinase are nowmembers
of the same chemical species (Fig. 3c).

4 Notes

1. The “\” character at the end of a line denotes line continuation
in BNGL.

2. From left to right, the icons on the toolbar correspond to the
following modes:

(a) Object Manipulation Mode

(b) Add Site (arbitrary bond state)

(c) Add Site (bound, unspecified binding partner)

(d) Add Site (unbound)

(e) Add Molecule

(f) Add Bond

(g) Add Mapping

(h) Add Plus Sign

(i) Add Arrow Separator

(j) Add Double-Arrow Separator

The final two icons are a trash can and a disk icon. The trash
can icon enables deletion of objects from the graph (provided
that an object is selected via “Object Manipulation” mode).
The disk icon enables saving the current image to file in multi-
ple formats, including the GIF, PNG, and JPEG formats.

3. Sites can only have one internal state, meaning that only one
“~” character is allowed following a site’s name.

4. RuleBuilder does not fully parse BNGL syntax. As a result,
strings denoting a rule’s rate law information should be
restricted to alphanumeric symbols to avoid erroneous parsing
of the rule.

5. The double-arrow operator is syntactic sugar allowing two
unidirectional rules to be written on one line as a bidirectional
(i.e., reversible) rule. One unidirectional rule is defined by a
left-to-right reading and the other is defined by a right-to-left
reading. Rules defined with the double-arrow operator require
two rate law definitions separated by a comma.

RuleBuilder 41



6. Molecules that do not have sites but are connected with the dot
(.) operator are part of the same complex. This is not shown in
RuleBuilder, as bonds are only drawn between sites. Molecules
shown in the RuleBuilder GUI are assumed to be connected
unless the “þ” operator is between them.

Acknowledgments

This work was supported by NIH/NIGMS grant R01GM111510.
RS also acknowledges support from the Center for Nonlinear
Studies, which is funded by the Laboratory Directed Research
and Development program at Los Alamos National Laboratory,
which is operated for the National Nuclear Security Administration
of the US Department of Energy under contract DE-AC52-
06NA25396.

References

1. Chylek LA, Harris LA, Tung C-S et al (2014)
Rule-based modeling: a computational
approach for studying biomolecular site
dynamics in cell signaling systems. Wiley Inter-
discip Rev Syst Biol Med 6:13–36

2. Chylek LA, Wilson BS, Hlavacek WS (2014)
Modeling biomolecular site dynamics in immu-
noreceptor signaling systems. In: Corey SJ,
Kimmel M, Leonard JN (eds) A systems biol-
ogy approach to blood. Springer New York,
New York, NY, pp 245–262

3. Mayer BJ, Blinov ML, Loew LM (2009)
Molecular machines or pleiomorphic ensem-
bles: signaling complexes revisited. J Biol 8:81

4. Suderman R, Deeds EJ (2013)
Machines vs. ensembles: effective MAPK sig-
naling through heterogeneous sets of protein
complexes. PLoS Comput Biol 9:e1003278

5. Faeder JR, Blinov ML, Hlavacek WS (2009)
Rule-based modeling of biochemical systems
with BioNetGen. Methods Mol Biol
500:113–167

6. Gillespie DT (2007) Stochastic simulation of
chemical kinetics. Annu Rev Phys Chem
58:35–55

7. Suderman R, Mitra ED, Lin YT et al (2018)
Generalizing Gillespie’s direct method to
enable network-free simulations. Bull Math
Biol. https://doi.org/10.1007/s11538-018-
0418-2

8. Smith AM, Xu W, Sun Y et al (2012) RuleBen-
der: integrated modeling, simulation and
visualization for rule-based intracellular bio-
chemistry. BMC Bioinformatics 13(Suppl 8):
S3 1–24

9. Suderman R, Hlavacek WS (2017) TRuML: a
translator for rule-based modeling languages.
In: Proceedings of the 8th ACM International
Conference on Bioinformatics, Computational
Biology, and Health Informatics –
ACM-BCB’17. ACM Press, New York, NY,
pp 372–377

10. Sneddon MW, Faeder JR, Emonet T (2011)
Efficient modeling, simulation and coarse-
graining of biological complexity with NFsim.
Nat Methods 8:177–183

11. Tapia J-J, Faeder JR (2007) The Atomizer:
extracting implicit molecular structure from
reaction network models. In: Proceedings
of the International Conference on Bioinfor-
matics, Computational Biology and Biomedi-
cal Informatics – BCB’13. ACM Press,
New York, NY, pp 726–727

12. Sekar JAP, Tapia JJ, Faeder JR (2017) Auto-
mated visualization of rule-based models.
PLoS Comput Biol 13:1–23

13. Schaff JC, Vasilescu D, Moraru II et al (2016)
Rule-based modeling with Virtual Cell. Bioin-
formatics 32:2880–2882

14. Hu B, Matthew Fricke G, Faeder JR et al
(2009) GetBonNie for building, analyzing
and sharing rule-based models. Bioinformatics
25:1457–1460

15. Faeder JR, Blinov ML, Hlavacek WS (2005)
Graphical rule-based representation of signal-
transduction networks. In: Liebrock LM
(ed) SAC ‘05 Proceedings of the 2005 ACM
symposium on applied computing. ACM Press,
New York, NY, pp 133–140

42 Ryan Suderman et al.

https://doi.org/10.1007/s11538-018-0418-2
https://doi.org/10.1007/s11538-018-0418-2

	Chapter 2: Using RuleBuilder to Graphically Define and Visualize BioNetGen-Language Patterns and Reaction Rules
	1 Introduction
	2 Materials
	3 Methods
	3.1 Visualizing a BNGL Pattern or Reaction Rule
	3.2 Graphically Building a BNGL Pattern or Reaction Rule
	3.3 A Rule-Building Example

	4 Notes
	References


