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Abstract— Scalability is a significant challenge for robot
swarms. Generally, larger groups of cooperating robots
produce more inter-robot collisions, and in swarm robot for-
aging, larger search arenas result in larger travel costs. This
paper demonstrates a scale-invariant swarm foraging algo-
rithm that ensures that each robot finds and delivers targets
to a central collection zone at the same rate regardless of the
size of the swarm or the search area. Dispersed mobile de-
pots aggregate locally collected targets and transport them
to a central place via a hierarchical branching transportation
network. This approach is inspired by ubiquitous fractal
branching networks such as tree branches and animal
cardiovascular networks that deliver resources to cells and
determine the scale and pace of life. We demonstrate that
biological scaling laws predict how quickly robots forage
in simulations of up to thousands of robots searching
over thousands of square meters. We then use biological
scaling to predict the capacity of depot robots that overcome
scaling constraints to produce scale-invariant robot swarms.
We verify the claims for large swarms in simulation and
implement a simple depot design in hardware.

I. INTRODUCTION

Foraging is a canonical swarm robotics task with
applications in search and rescue, construction, trans-
portation, and exploration [1]–[4]. Agricultural harvest-
ing [5], planetary exploration [6] and mining [6], [7]
in particular require large numbers of robots to effi-
ciently gather and transport resources over potentially
large areas. We propose a hierarchical transportation
network for thousands of robots to efficiently collect
targets dispersed over large foraging arenas.

Central-place foraging (CPF) is the problem of
searching for resources and transporting them to a
central collection zone [8]–[10]. Here we design a scale-
invariant foraging system in which the foraging rate is
linear in both the number of robots and the search area.
Biological swarms such as colonies of social insects,
flocks of birds, and schools of fish have long served as
inspiration for swarm robotics, in part due to the scal-
ability of their solutions [11]–[15]. Biological systems
also illustrate how collective systems can be adaptable
and robust to individual failures, particularly in swarm
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foraging where multiple robots are advantageous for
collecting spatially dispersed targets [9], [11]–[13], [16].

Two problems affect scalability, the first is a function
of swarm size and the second is a function of the size of
the search area. First, large swarms with many robots
produce more inter-robot collisions both during the
search process and during the return of targets to a
relatively small, centralized collection zone. These col-
lisions result in diminishing returns [17] as the swarm
grows. Second, large foraging arenas require robots to
travel further distances to find targets and transport
them to the central collection zone.

We demonstrate the utility of applying biological
scaling theory [18], [19] to swarm robotics by analysing
the efficiency of central place foraging algorithms (CP-
FAs). We then demonstrate how to achieve near-linear
scaling in two ways 1) by modifying the multiple place
foraging algorithm (MPFA) [20], [21] to have variable
capacity depots and 2) by creating a hierarchical trans-
port multiple place foraging algorithm (MPFAH). Using
biological scaling theory we are able to show that
in theory the MPFAH and MPFA reach almost perfect
scale-invariant foraging, but simulations that include
collisions among depots show that only the MPFAH
approaches linear scaling. The MPFAH uses a hierar-
chical network of mobile-depots of increasing capacity
to achieve this scaling. We present a proof-of-concept
hardware implementation of a robotic mobile-depot
which is the foundation of the MPFA and MPFAH.

I-A. Related Work

Scalability is a fundamental challenge in computer
science [22]. Though swarm robot foraging has been
studied for decades [14], [16], [23], analysis of the scal-
ability of large swarms is limited. Where scalability has
been analyzed, most studies find that large swarms are
less efficient. For example, [24]–[26] all show dramatic
reductions in per robot foraging rates for even modest
increases in swarm size.

This work is related to task partitioning which has
previously been shown to improve scalability. Pini et
al. [27] demonstrated that a static partitioning strat-
egy can provide a scalable and robust foraging robot
swarm. Buchanan et al. [28] improved the scalability
of robot swarms using a dynamic partitioning strategy
which mitigates dead reckoning error. The work in [29]
describes a leafcutter ant inspired foraging algorithm.
The robot swarm achieves maximum foraging per-



formance by dividing foraging and delivering tasks
automatically using Grammatical Evolution [30]. In [31]
the authors demonstrate the importance of tuning robot
carrying capacity vs. swarm size in designing scalable
non-central-place foraging algorithms. We build on
this earlier work by introducing mobile depots with
capacity tuned to optimize the transportation task.

II. SCALING ANALYSIS

Biological scaling theory predicts that the cardio-
vascular transportation rate is proportional to animal
volume (or mass) to the 3/4 power and more generally
to the power D/(D + 1) where D is the system’s
dimensionality. This constraint arises from the need
to transport resources over greater distances in larger
animals and limitations on the space available to de-
vote to transportation routes. In essence, as body size
increases the proportion of resources in transit, rather
than in active use by cells, increases non-linearly. As a
result, the resources available to each cell are reduced
by a 1/4 power of body mass [32]. For example,
biological rates and times (e.g. fertility rates, heart rate
and lifespan) are predicted and observed to be 30 times
slower in an elephant which is a million times larger
than a mouse. Below we derive how scaling produces
analogous diminishing returns for CPFAs in 2D.

The transportation of resources through the cardio-
vascular system from the heart to dispersed cells (filling
the 3D space of a mammal body) is the inverse problem
of (2D) transportation of dispersed targets to a central
collection zone in robot foraging. Scaling laws explain
how the 3/4 power scaling of delivery rates, and −1/4
power scaling of per-cell biological rates with body
size result from a hierarchical transportation network
which minimizes energy dissipation [18] and resource
delivery time [19]. We have previously used this theory
to predict how power and performance scale with
microprocessor size [33].

To translate the biological scaling theory into a model
of scalable robot foraging, we first identify similar-
ities between the delivery of blood, which carries
resources to cells through cardiovascular networks,
and the robot foraging task, which carries targets to
collection zones. In biology, scaling theory considers
delivery of resources in 3D bodies divided into ‘service
volumes’ which are the volume of tissue supplied by
one capillary that delivers blood. Our ground-based
robot foraging take places in a 2D area divided into
“search regions” surrounding each depot that serves
as a local collection zone. Both require transportation
between a central site (heart or collection zone) and a
service region. The venous system which conversely
transports cellular waste such as CO2 to the central
pulmonary system is directly analogous to CPF. The
analogies between these systems are listed in Table I.

We derive scaling predictions for foraging robot
swarms using the following definitions and simplifying

TABLE I: Similarities between cardiovascular systems
and robot swarms

Organisms Robot swarms
3D bodies 2D arenas
Blood cells Robots

Heart Central collection zone
Service volumes Search regions

Resources Targets
Metabolic rate Foraging rate

Resource delivery Target collection

premises translated from [19] which derives maximal
scaling by “matching supply and demand” so that
there is no waiting or delay in pickup or delivery
of targets. For simplicity, we omit the constants of
proportionality.

II-A. Premises and Definitions

Definition 1: The foraging problem is defined as
collecting targets from an arena divided into Nr search
regions. Each region has a specified area, Ar so that
total arena area A = Nr Ar, which allows the size
of search regions to vary with total arena size. Each
region has a collection zone at its center. Searching
robots operate within a designated search region and
deliver targets to the collection zone at the center of its
foraging region. Depots collect targets from their col-
lection zones at level i and transport them to collection
zones at level i− 1 via the route specified by the net-
work. The ant-inspired central place foraging algorithm
(AntCPFA) [9] has zero such levels, MPFA [20] has 1
such level, and here we introduce the MPFAH which
has a number of levels determined by the size of the
foraging area.

Definition 2: Target density, Dt, is the number of
targets, M, in arena A; Dt = M/A. Simulation exper-
iments have M targets distributed uniformly in A. To
maintain constant Dt and simplify the analysis, as tar-
gets are collected, they are replenished in a randomly
chosen new location.

Definition 3: Foraging rate, F, is the number of targets
collected at the top-level central collection zone per unit
time. The foraging rate in a region i is Fi

r , the number
of targets collected and transported to the regional col-
lection zone per unit time. Thus F = ∑Nr

i=1 Fi
r . Since the

number of searching robots in each region is constant,
we have F ∝ Nr and Ar ∝ A/Nr ∝ A/F.

Premise 1: Searching robot velocity, v f , is constant
across all experiments. Depot velocity, vd, can vary for
each foraging model and experimental setup.

Premise 2: The capacity of searching robots is always
one target. The capacity of depots, C, can vary for each
foraging model and experimental setup.

Premise 3: The number of targets in transit is at
a steady state. The foraging rate F of targets being
collected in all regions matches the rate targets that are
delivered to a central collection zone.



Premise 4: The number of targets in transit is pro-
portional to arena area: Nt ∝ A and thus, the density
of targets in transit is the same across arena sizes. This
premise is analogous to the biological scaling theory
assertion that the fraction of blood (that transports
resources) is constant across animal sizes.

Premise 5: The delivery rate matches the foraging
rate. The system minimizes the time that collected
targets are stored in regional collection zones waiting
for a depot to pick them up; and no depot arrives at
a collection zone and has to wait for a searching robot
to drop off targets (i.e., if a depot has capacity 4, then
there should be exactly 4 targets ready for pickup when
it arrives at its collection zone). This design minimizes
the delay in delivery. Ideally, this efficient pipelining
means that targets do not unnecessarily wait to be
picked up, and depots do not unnecessarily wait for
targets to arrive at the collection zones. Thus, the rate
of the dropoff in a region equals the rate of the pickup
in that region, and therefore the delivery rate to the
central collection zone equals the total foraging rate
summed over all regions, F.

II-B. Sublinear Scaling in Transportation Networks

The explosion network (Figure 1a) models the MPFA
which transports targets from each region directly to
the central collection zone. The hierarchical branch-
ing network models the transportation routes of the
MPFAH. In the fully scalable implementation of the
MPFAH (described below in Theorem 3, and in Simu-
lation Set III in Experimental Methods) targets are ag-
gregated in smaller numbers of larger capacity depots
along these routes.

Lemma 1. The number of targets being transported is
proportional to the mean transport route length times the
foraging rate divided by the depot velocity, i.e. Nt ∝ l̄rtF/vd.

Proof: We begin by relating foraging rate, F, to
arena area, A, following [19]. The number of targets in
transit is Nt ∝ nNrt, where Nrt is the number of routes
from every region to the central collection zone and n
is the average number of targets in transit per route.
Therefore, Nrt ∝ Nr ∝ F and n = l̄rt/vd, where l̄rt is
the average length of a route: l̄rt ∝ A1/2. It follows that
Nt ∝ l̄rtF/vd.

Theorem 1. When robots follow an “explosion network”
strategy with fixed robot velocity and depot capacity1, the
foraging rate, F, will be proportional to the square root of
the foraging arena area, i.e., F ∝ A1/2.

Proof: From Lemma 1 we have Nt ∝ l̄rtF/vd. Since
vd is kept constant, Nt ∝ FA1/2. From Definition 3,
Nt ∝ A and therefore F ∝ A1/2 . Theorem 1 is
the trivial scaling case in which targets spend time in
transport proportional to the radius, A1/2, which slows

1For CPFAs without mobile depots the capacity is trivially zero.

(a) Explosion (MPFA) (b) Hierarchical (MPFAH)

Fig. 1: Transport paths in (a) explosion (MPFA) and (b)
hierarchical (MPFAH) networks. Each small square is
a region with 4 searching robots (tiny dots). Mobile
depots (tiny dots) transport targets to intermediate
collection zones in next level (green circles) or to the
central collection zone (green circle in the center) via
routes (colored lines).

per capita delivery and therefore total foraging rates to
also be proportional to A1/2. To improve the scaling
of the explosion transport network, following [19], we
allow vd to increase with arena size by setting vd to
the maximum value that allows consistently matching
collection rate to delivery rate at all collection zones
within an arena.

Theorem 2. If the mobile-depot velocity is allowed to scale
to the maximum beneficial value, then the foraging rate scales
with foraging-arena area to the 2/3 power and velocity scales
with area to the 1/6 power, i.e., when vd is maximized subject
to D = F then F ∝ A2/3 and vd ∝ A1/6.

Proof: As shown in [19], the maximum velocity
is proportional to the length of the shortest route (or
region length) l. Exceeding this velocity forces depots to
wait to be loaded which does not improve delivery rate.
From Premise 3 we have F ∝ Nr. Because the foraging
arena is divided into Nr regions of length l we have
A = l2Nr, which is l = (A/Nr)1/2. Therefore vd ∝
l ∝ (A/F)1/2. It follows that Nt ∝ FA1/2/(A/F)1/2 ∝
F3/2. Thus, by maximizing velocity, we have derived
the classic biological D/(D + 1) scaling theory for 2-
dimensions: F ∝ A2/3 when vd ∝ l ∝ A1/6 .

The hierarchical network differs from the explo-
sion network by aggregating target transportation onto
paths of increasing length and capacity. Figure 1b
shows a network composed of 4 branches at each level
from the central collection zone (level 0, red) to 4
regional depots (level 1, blue), to 16 sub-regional depots
(level 2, yellow) and finally to 64 search regions with
depots (green dots) at their center. We define a to be
the ratio of route length at levels i and i− 1 and b to be
the in-degree for vertices in the directed tree that forms
the hierarchical transportation network. In Figure 1b
the network is a quad-tree with a = 2 and b = 4.

Lemma 2. The minimum number of depots, Nd, required



(a) Collection (b) Transport (c) Drop Off

Fig. 2: Proof of concept implementation of the MPFAH using mobile depots. The three stages of depot behaviour
are illustrated with Swarmie robots [6] and depots, collection zones labeled with April Tags: (a) searching robots
place targets in the depot and send a message to the depot indicating a target was deposited, (b) once the depot
reaches its pre-specified capacity, it travels to a collection zone, (c) the depot robot then rotates 180◦ and deposits
the targets. Finally the mobile-depot returns to its original location and repeats.

TABLE II: The experimental parameters used to evaluate predictions in Theorems 1, 2 and 3. Set I has fixed
mobile-depot capacity, fixed depot velocity and variable region sizes following the premises of Theorem 1. In
Set II velocity of mobile-depots scales with arena area, which consequently changes region length according
to Theorem 2. In Set III, the capacity of mobile-depots scales and the velocity is held constant according to
Theorem 3. The number of targets (M) in the arena is set to ensure constant target density, and the number of
searching robots (Ns), mobile depots (Nd), depot capacities (C), and collection zones are determined according to
the premises and theorems in Section II.

Shared configuration MPFA MPFAH

Set
Delivery
Velocity

(vd)

Capacity
(C)

Region
Length

(l)

Region
(Nr)

Arena
Dim. (m)

Targets
(M)

Searching
(Ns)

Depots (Nd)
Eqn. 1

Collection
Zones

Collection
Zones (Nc)

Eqn. 3

Level
(L)

I 0.16 4

1 1 1×1 1 4 0 0 0 0
2 4 4×4 16 16 4 4 4 1
4 16 16×16 256 64 48 16 20 2
8 64 64×64 4096 256 896 64 84 3

II ∝ A1/6 4
1 1 1×1 1 4 0 0 0 0
2 16 8×8 64 64 48 16 20 2
4 256 64×64 4096 1024 3840 256 340 4

III 0.16 vary 5

4 10×10 100 16 16 4 4 1
16 20×20 400 64 80 16 20 2
64 40×40 1600 256 336 64 84 3
256 80×80 6400 1024 1360 256 340 4

for the intake rate at the central collection zone, D, to match
the total collection rate, F, is as follows:

Nd =

{√
2Fr

vdC (A− A3/4) if vd is constant
√

2Fr
C (A− A2/3) if vd ∝ A

1
6

(1)

Proof: The required number of levels, L, to connect
all regions is logb Nr. Nd is minimized subject to the
condition that D = F and in accordance with Premise 5.
The time for a depot at level i to make a round
trip from the center of its region to its destination
collection zone or depot is Ti

d = 2di/vd, where di
is the distance from the center of a region at level i
to the center of the destination region at level i − 1.
The number of depots Ni

d is equal to the number of
collected targets in Ti

d at level i divided by the capacity
C: Ni

d = 2bi+1FrbL−i−1di/(vdC), where FrbL−i−1 is the
rate targets are collected in zones at level i and bi+1 is
the number of branches at level i.

In the following summation over levels we first
substitute bL for Nr, then di for d0ai, and d0 for

√
2

2 l,

and then aL for N
1
2

r .

Nd =
L−1

∑
i=0

2FrbLdi
vdC

=

√
2Fr Nrl
vdC

(
aL − 1
a− 1

)
=

√
2Frl

vdC
(N3/2

r − Nr)

(2)

Finally we rewrite Equation (2) in terms of A using
Theorem 1 and Theorem 2.

II-C. Scale-Invariant Transportation Network
In biology, the explosion and hierarchical networks

are both limited to sublinear scaling: F ∝ A(D−1)/D

when vd is constant and F ∝ AD/(D+1) when vd scales
at its maximum value. However, we can use scal-
ing theory to design a scale-invariant foraging swarm



which escapes these constraints so that the total forag-
ing rate is linear with arena size and swarm size and
per capita foraging rates are constant. If we increase
the depot capacity Ci at level i by ab from level i + 1,
(Ci = c(ab)L−i−1, where c is the capacity of depots in
regional collection zones at level L − 1), Equation (1)
will have a constant Ni

d in each collection zone at each
level i. With this depot capacity, transport keeps pace
with the foraging in each identically sized region and
Theorem 3 follows:

Theorem 3. A CPFA employing a hierarchical transporta-
tion network using mobile-depots with capacity that scales
with the level of the hierarchy they service will have a
foraging rate that scales linearly with the foraging-arena
area, i.e., F ∝ Nr ∝ A.

For the quad-tree implementation, there are 4 search-
ing robots in each region and 4 depots for each collec-
tion zone, and each depot has a systematically larger
capacity on more central routes. So, the total number of
searching robots is 4Nr and the total number of depots
is 4Nc, where Nc is the number of collection zones
(excluding the central collection zone). Thus:

Nc =
L−1

∑
i=0

Nr

bi =
4(Nr − 1)

3
(3)

III. EXPERIMENTAL METHODS

We conducted three sets of experiments using
the Autonomous Robots Go Swarming (ARGoS) [34]
robot simulator to test our theoretical predictions (see
Youtube video2). The experimental setup for each set is
summarized in Table II. For each Set, we implement the
MPFA explosion network and the MPFAH hierarchical
branching network. In Set I, we test the 1/2 scaling
with constant depot velocity and capacity. In Set I, we
also implement the Ant-inspired CPFA without depots
for comparison.

In Set II, we test the 2/3 scaling predicted by The-
orem 2, here C = 4 and vd ∝ l ∝ A1/6. In Set III,
we test the linear scaling predicted by Theorem 3. As
described in Section II-C for the MPFAH the depot
capacity C is scaled by ab on each level, and the number
of depots, Nd, is 4Nc as predicted in Equation (3). We
also implemented a new variant of the MPFA that uses
variable numbers and capacities of robots (analogous
to the MPFAH). The experimental parameters listed
in Table II were selected carefully to meet multiple
constraints. Arena dimensions are chosen to ensure that
the dependent variables are integers and divisible by
4 when necessitated to achieve a balanced quad tree.
This avoids fractional regions and robots.

To provide fair comparisons within each Experi-
mental Set, we use the same number of robots for

2https://youtu.be/tgSTCz264cU
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(a) Comparison between Theorem 1 and Simulation Set I. All
algorithms in Set I use depots with constant capacity and
velocity.
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(b) Comparison between Theorem 2 and Simulation Set II. All
algorithms in Set II have depots with velocity proportional
to the distance they must cover (labelled “vary” in Table II).
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(c) Comparison between Theorem 3 and Simulation Set III.
All algorithms in Set III use constant velocity and variable
capacity depots.

Fig. 3: Scaling in simulation vs theory. Scaling expo-
nents are the slopes (listed in the legends) on log-log
plots of the regression line for each algorithm. Each
data-point is the mean of 60 30-minute trials. Note the
change in x-axis scale in panel (c).

https://youtu.be/tgSTCz264cU


the explosion and hierarchical implementations and
the same number of depots for the MPFA and the
MPFAH. In the MPFA, we distributed depots on each
delivery route proportional to the length of that route.
In the AntCPFA, the depots are replaced with searching
robots that directly deliver targets to the central collec-
tion zone. The AntCPFA is only included in Set I where
we demonstrate that it is not scalable, consistent with
results from prior work [20].

IV. EXPERIMENTAL RESULTS

Generally, scaling relationships are analyzed as Y =
αXβ where α is a conversion factor, and β is an expo-
nent which indicates the scaling relationship between
X and Y. We display and analyze log-transformed data
so that log2 Y = β log2 X + log2 α. The slope of the
regression between the log2 Y and the log2 X gives an
estimate of the scaling exponent β.

In Figure 3 simulations marked with an asterisk were
run without depot collisions (but forager collisions
were kept in the simulation). These runs agree closely
with theory (p-value< 0.001 in all cases). The degree to
which experiments that include depot collisions deviate
from theory illustrates how sensitive each algorithm is
to depot collisions.

Figure 3a highlights the degradation in performance
due to depot collisions when depots have fixed ca-
pacity and travel with a fixed velocity. The slopes of
the MPFA* and the MPFAH* approach the 1/2 slope
predicted by Theorem 1, with slopes of 0.46 and 0.45 re-
spectively. However, the implementations with depots
collisions are less scalable. Searcher collisions reduce
the scalability of the AntCPFA dramatically, and since
that algorithm does not include depots, there is no way
to improve its scaling with a transportation network.

In Figure 3b scaling of the MPFAH is worse than
the MPFA, and both are well below the 2/3 slope
predicted by Theorem 2. However, that scaling is nearly
achieved by depot collision-free algorithms. This is
because with large numbers of low-capacity depots,
the MPFAH has high collision rates because there are
many depots crowded onto a few routes. Collisions
are actually worse in Set II with faster depot velocity,
compared to Set I with slower, fixed velocity. Too many
depots cause more problems for the MPFAH than for
the MPFA, because targets aggregated at mid-level
collection zones in the MPFAH cannot reach the central
collection zone via the four crowded routes available.

Figure 3c shows that scaling depot capacity, C, is the
key to scalable foraging, even with collisions in the
MPFAH. This approach of aggregating more targets in
a few larger depots (rather than in many small depots)
reduces collisions. The slope of the MPFAH, 0.86, is
closer to the theoretical optimum than the MPFA, 0.56,
and is the highest slope of all algorithms that consider
depot collisions.

V. DISCUSSION

Real-world applications like harvesting, mining and
planetary exploration require that robots find and col-
lect as many objects as possible from large areas in
the least amount of time. We propose the MPFAH as
a highly scalable foraging algorithm, designed from
biological scaling principles, tested in simulation, and
with mobile depots and foraging robots implemented
in hardware as a proof of concept.

We predict how to achieve scale-invariant foraging
by aggregating target transport into depots, with the ca-
pacities, routes, and numbers of depots determined by
biological scaling theory. The MPFAH achieves nearly
scale-invariant foraging even when collisions are in-
cluded in simulations. Our proof of concept shows
that depots can collect from foraging robots in one
region and deliver to the next hierarchical level of our
transportation architecture. Since the MPFAH algorithm
allows each foraging region to operate independently,
and it effectively coordinates delivery between hierar-
chical levels, the feasibility we demonstrated in one
region is evidence that the approach could be imple-
mented at larger scales in physical hardware.

Our three sets of experiments validate the mathe-
matical claims of several variants of scaling theory.
Using the MPFA* and the MPFAH* that eliminate
collisions among depots, we show that both explo-
sion algorithms and hierarchical branching algorithms
approach the claims of each theorem (1/2, 2/3, and
linear scaling). Performance in most implementations
is substantially impaired when collisions are included
in simulations. For example, with collisions both the
MPFA and MPFAH are several orders of magnitude
worse in the largest arena in Sets I and II (see Figure 3,
panels (a) and (b); compare filled squares and circles to
hollow ones). However, the scale-invariant implemen-
tation of the MPFAH is very close to the predicted slope
(0.86 vs 1.0), even with collisions, and it outperforms
the MPFA by several orders of magnitude. This high-
lights an important feature of the hierarchical network.
By aggregating targets into the sizes and numbers of
depots predicted by scaling theory (analogous to the
way blood is aggregated in larger vessels like the aorta
in cardiovascular networks) the MPFAH reduces both
the number of paths to each collection zone, and the
crowding on each path. The branching factor b results
in a constant density of depots throughout the arena,
even as the swarm and arena scale to large sizes.
The robot foraging transportation network can increase
capacity (up to the largest possible depot) to accom-
modate the increase in transport required in larger
arenas to ensure that delivery capacity keeps up with
a constant per-forager collection rate. This produces
a scale-invariant swarm in theory and a nearly scale-
invariant swarm when collisions are considered.
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[30] E. Ferrante, E. Duéñez-Guzmán, A. E. Turgut, and T. Wenseleers,
“GESwarm: Grammatical evolution for the automatic synthesis
of collective behaviors in swarm robotics,” in GECCO 2013
- Proceedings of the 2013 Genetic and Evolutionary Computation
Conference, 2013.

[31] A. Schroeder, B. Trease, and A. Arsie, “Balancing robot swarm
cost and interference effects by varying robot quantity and size,”
Swarm Intelligence, 2019.

[32] V. M. Savage, J. F. Gillooly, W. H. Woodruff, G. B. West, A. P.
Allen, B. J. Enquist, and J. H. Brown, “The predominance of
quarter-power scaling in biology,” Functional Ecology, vol. 18,
no. 2, pp. 257–282, 2004.

[33] M. Moses, G. Bezerra, B. Edwards, J. Brown, and S. Forrest,
“Energy and time determine scaling in biological and computer
designs,” Philosophical Transactions of the Royal Society B: Biolog-
ical Sciences, 2016.

[34] C. Pinciroli, V. Trianni, R. OGrady, G. Pini, A. Brutschy,
M. Brambilla, N. Mathews, E. Ferrante, G. Di Caro, and
F. Ducatelle, “ARGoS: a modular, parallel, multi-engine simu-
lator for multi-robot systems,” Swarm intelligence, vol. 6, no. 4,
pp. 271–295, 2012.


	Introduction
	Related Work

	Scaling Analysis
	premises and definitions
	Sublinear scaling in transportation networks
	Scale-invariant transportation network

	Experimental Methods
	Experimental Results
	Discussion
	References

