
Comparing Physical and Simulated Performance of a Deterministic and
a Bio-inspired Stochastic Foraging Strategy for Robot Swarms

Qi Lu∗,1, Antonio D. Griego1, G. Matthew Fricke1,2, and Melanie E. Moses1,3,4

Abstract— Designing resource-collection algorithms for rel-
atively simple robots that are effective given the noise and
uncertainty of the real world is a challenge in swarm robotics.
This paper describes the performance of two algorithms for
collective robot foraging: the stochastic central-place foraging
algorithm (CPFA) and the distributed deterministic spiral
algorithm (DDSA). With the CPFA, robots mimic the foraging
behaviors of ants; they stochastically search for targets and
share information to recruit other robots to locations where
they detect multiple targets. With the DDSA, robots travel along
pre-planned spiral paths; robots detect the nearest targets first
and, in theory, guarantee eventual complete coverage of the
arena with minimal overlap. We implemented both algorithms
and compared their performance in a Gazebo simulation and in
physical robots in a large outdoor arena. In a realistic Gazebo
simulation, the DDSA outperforms the CPFA. However, in real-
world experiments with obstacles, collisions, and errors, the
movement patterns of robots implementing the DDSA become
visually indistinguishable from the CPFA. The CPFA is less
affected by noise and error, and it performs as well as, or better
than, the DDSA. Physical experiments change our conclusion
about which algorithm has the best performance, emphasizing
the importance of systematically comparing the performance
of swarm robotic algorithms in the real world.

I. INTRODUCTION

Robot swarms are particularly useful in spatially dis-
tributed tasks such as central place foraging, in which robots
search for targets and transport them to a collection zone [1],
[2]. Swarm foraging algorithms often mimic the stochastic
behaviors of social animals, particularly social insects such
as ant colonies [3], [4], [5].

In this work, we conduct physical and simulated experi-
ments to compare two collective robot foraging algorithms:
the central place foraging algorithm (CPFA) [4] and the
distributed deterministic spiral search algorithm (DDSA) [6].
In previous work, these algorithms were compared using the
Autonomous Robots Go Swarming (ARGoS) [7] simulator,
and it was found that simple robot swarms operating in
obstacle-free environments collected resources faster using
the DDSA compared to the CPFA [6], at least for swarm
sizes of up to 20 robots.

The foraging performance of robots can be measured
by the number of targets retrieved in a fixed time. It
is important to evaluate collective algorithms in physical
robots [2] because it is not feasible to simulate all aspects

This work was supported by a James S. McDonnell Foundation Complex
Systems Scholar Award and NASA MUREP #NNX15AM14A funding.

1Computer Science Department, 2Center for Advanced Research Com-
puting, 3Biology Department, University of New Mexico, Albuquerque,
4Santa Fe Institute, Santa Fe, NM, USA

∗lukey11@cs.unm.edu

of a physical environment [8], and foraging performance can
be altered by variable conditions and by sensor and actuation
noise that affect localization, object retrieval, and collision
avoidance. All of these components of the “reality gap” can
alter the performance of algorithms real robotic experiments
compared to simulations [9], [10].

Predicting the performance of swarm algorithms in real
robots is especially challenging because interactions among
robots are inherently difficult to predict. Deterministic al-
gorithms may become effectively random when operating
in environments with unexpected interactions. Thus, while
simulations are useful for initial evaluations of the viability
of algorithms, they are insufficient for the ultimate goal of
predicting how algorithms will perform when physical robots
interact in the unpredictable conditions of environments they
are placed in.

This work implements two swarm foraging algorithms in
the robot operating system (ROS) [11]. We systematically
compare the foraging performance of the DDSA and the
CPFA by measuring how quickly targets are collected in
fixed time. We designed a set of experiments that we
replicated in a Gazebo simulation [12] and in physical robots
called “Swarmies” that search for, pick up, and collect
physical objects (which we call targets) in outdoor arenas
with various placements of targets and obstacles.

In previous work we compared the DDSA and the CPFA in
intentionally simple simulations implemented in the footbot
robot in ARGoS [6]. In contrast, in this paper, we de-
scribe simulations implemented in Gazebo that include more
realistic physical processes that represent the localization,
navigation, sensing, object pickup and drop off, and collision
avoidance of the Swarmie robots that we implement in
physical experiments. Still, our physical experiments include
variability inherent to outdoor environments and sensor and
actuator noise that is not fully simulated in our Gazebo
simulations.

The major contribution of this work is to compare a
deterministic and a stochastic swarm foraging algorithm in
simulations and in physical robots. Our goal is to test whether
the most efficient algorithm in the simulation is also the
most efficient in physical experiments. We implement both
algorithms in physical hardware and show that the perfor-
mance of each algorithm is impacted in different ways by
the noise and error of the physical world. The conclusion we
draw from comparing the two algorithms is: the deterministic
DDSA is more efficient than the CPFA in the simulation.
However, the stochastic CPFA marginally outperforms the
DDSA in physical experiments. The performance of the

2019 International Conference on Robotics and Automation (ICRA)
Palais des congres de Montreal, Montreal, Canada, May 20-24, 2019

978-1-5386-6027-0/19/$31.00 ©2019 IEEE 9285

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on June 06,2020 at 15:21:41 UTC from IEEE Xplore. Restrictions apply.

DDSA is more degraded by conditions in the physical world,
suggesting that the CPFA is more tolerant of real-world
conditions.

The paper is organized as follows. The related work is
presented in Section II. Sections III and IV summarize
the CPFA and DDSA algorithms. Section V describes the
physical robots and physical and simulated environments.
Section VI describes the experiments, with results reported
in Section VII. Section VIII discusses the strengths and
limitations of stochastic and deterministic search strategies.

II. RELATED WORK

Though swarm robot foraging has been studied for
decades, replicated experimental analyses that compare dif-
ferent algorithms in simulation and in real robots are rare,
particularly in outdoor environments [1], [2]. Many task
partitioning and foraging algorithms have been simulated
in the STAGE [13], [14], [15], the ARGoS [5], [16], [17]
and Microsoft(R) Robotics Studio (MRDS) [18]. Physical
foraging experiments have been conducted with Foot-bots
equipped with grippers, IR sensors, and cameras for foraging
tasks in [16], [17] and custom platforms like MinDART [19].

In practice, many complex physical experiments with
swarm robots require human support [20] or simulation of
some aspect of the foraging task. For example, the Robo-
tarium provides a testbed for remotely accessible physical
robots [21], but localization is governed by an overhead
camera. Other studies simulate physical pickup and drop-off
of objects. For example, [22], [15] uses a group of e-puck
robots and our prior work [4] used iAnt robots which detect
targets but do not physically pick them up. Kilobots can
operate autonomously to push items, but they have relatively
limited mobility and only operate in controlled laboratory
environments [23], [24]. Collaborative warehouse robots may
require buried guide-wires or visual markers to navigate [25].
The Swarmanoid demonstrates an innovative heterogeneous
physical swarm robotics system whose robots collaborate to
solve a complex object retrieval task [26], but it was designed
as a demonstration of swarm capabilities, not to replicate
experiments to test algorithms in a physical environment.

Swarmie robots allow us to conduct automated, replicated
experiments to test autonomous collective foraging. The
Swarmies physically pick up and drop off targets and operate
outdoors under variable ground and light conditions. These
factors are important sources of error and noise in our
experiments. However, Swarmies have some limitations as
a swarm robotics platform. They use GPS, a global (but
still noisy) signal, to mitigate the localization problem. We
also occasionally use human intervention to prevent robots
from leaving the foraging arena. Finally, while Swarmies can
operate in larger swarms, the experiments here are with 4
robots.

III. CENTRAL PLACE FORAGING ALGORITHM: CPFA

With the CPFA, robots mimic the foraging behaviors
of Pogonomyrmex desert seed-harvester ants, social insects

which have evolved to cooperate without centralized con-
trol [27], [28]. Fig. 1a shows how individual robots transition
between states in the CPFA based on various conditions
(further detailed in [4]). Robots start from the central col-
lection zone and travel towards a randomly selected location
(State A) until they switch to searching using an uninformed
correlated random walk [29] (State B). If a robot detects
targets (Condition 3), it collects the closest one (State D) and
measures the number of additional targets within its camera
view by rotating 360◦ (State E). The robot uses the measured
targets to decide whether to create a ”pheromone waypoint”
which adds the location and the strength to a list, mimick-
ing ant pheromone trails [30], [31], [32]. The strength of
waypoints decreases over time and waypoints can be added
to the list by other robots. Robots communicate pheromone
waypoints and may select waypoints probabilistically ranked
by strength at the nest.

The robot carries its collected target to the collection zone
and drops it off (State F). If a robot does not find a target, it
can, give up its search (Condition 6) and return to the collec-
tion zone (State F). A robot at the collection zone can share
pheromone waypoints with other robots at the nest. Then, the
robot takes its next foraging trip. It either selects a random
location (Condition 1) or selects a previously visited location
(Condition 7, State G) accomplished by either following a
pheromone waypoint or by returning to the last location it
found a target, a process called site fidelity. The probabilities
of creating a pheromone waypoint and of using site fidelity
are drawn from a Poisson distribution dependent on the
number of targets observed at that location. When robots
return to locations via either site fidelity or pheromone-
following (Condition 8), they search the area thoroughly with
an informed walk (state C) which is characterized by moving
more randomly, and therefore searching more thoroughly,
than in an uninformed walk.

CPFA robots make real-time decisions based on a set
of 7 real-valued parameters specifying the probabilities that
govern the transitions in Fig. 1a. The CPFA parameters
were selected by a genetic algorithm (GA) to maximize the
number of collected targets in [4]. This is not feasible given
the slow run-time of the Gazebo simulations or physical
robots. Instead, we hand-tuned the parameters (included
in our Github repository) based on the previously evolved
results.

IV. DISTRIBUTED DETERMINISTIC SEARCH
ALGORITHM: DDSA

In contrast to the CPFA, the DDSA takes a geometric
approach which exploits the optimality of spiral search
demonstrated for single agents [33], [34] generalized to a
swarm of robots. Robots using the DDSA start near the
central collection zone and search for targets by following
a pre-planned pattern of interlocking square spirals. When
operating without error, noise, or collisions, the DDSA
guarantees that robots will find the nearest targets first which
minimizes transport cost. This provides complete coverage

9286

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on June 06,2020 at 15:21:41 UTC from IEEE Xplore. Restrictions apply.

of an area while minimizing repeated searches of the same
location.

Each robot’s path is calculated based on the number of
robots r, the cth circuit (where a circuit is one revolution
of the spiral), and the distance g between the interlocking
spirals. The distance g depends on the target detection range
of the robot. For the Swarmie robots in these experiments,
g = 0.41m. Equations 1 and 2 calculate the number of
steps (F) of each spiral path to the north (N) and south (S)
directions by each of i robots on circuit c. c increases by one
if robots complete their current circuit. Distances travelled
east (E) and west (W) are similarly calculated. By solving the
recurrence relation given in [6] we can simplify the DDSA
formulation to the following two equations:

FN
c,i = FE

c,i =

{
i if c = 1

(2c− 3)r + 2i if c > 1
(1)

FS
c,i = FW

c,i =

{
2i if c = 1

FN
c,i + r if c > 1

(2)

Fig. 1(b) shows how each individual robot transitions
through a series of states as it forages for targets. The robots
are initially distributed around the collection zone. Each
robot calculates waypoints along its arm of the distributed
spiral path (Condition 1). Once it is complete, each robot
travels along its planned path and searches for targets (State
A). Once a robot finds a target (Condition 2), it picks it up
(State B). The robot carries the target directly back to the
collection zone (State C).

In each subsequent foraging trip, the robot returns directly
to the last location where it found a target (effectively
implementing site fidelity for every foraging trip) where it
resumes its spiral search. This relatively simple algorithm
guarantees that the closest targets are found first, and due to
site fidelity a robot will repeatedly return to a location so
that it efficiently collects clusters of targets [35].

V. DESCRIPTION OF SIMULATED & PHYSICAL ROBOTS

Our experiments run in a Gazebo [36] simulation and
in outdoor arenas using the Swarmie robot platform, all
of which were custom designed and built for the NASA
Swarmathon swarm foraging competition [37].

Gazebo simulates physical interactions among robots,
targets, obstacles, and the arena. In Gazebo, we carefully
construct models of real robots, obstacles, and targets in an
arena size scaled to match the 14m× 14m arenas used for
our physical experiments.

Each Swarmie robot is equipped with a front web camera,
three pairs of ultrasound range sensors, and a gripper for
target pickup and drop off (see Fig. 3a). The camera has a
field of view with a 1 rad arc and range of 1m. Objects
detected within 0.6m by ultrasounds trigger a simple ob-
stacle avoidance routine. The sensors detect collisions every
millisecond. The robot senses the location of the object and
turns left or right in order to avoid the collision. A diagnostic
package monitors hardware components and gives alerts to

(a) States in the CPFA

(b) States in the DDSA

Fig. 1: Robot states in the CPFA and DDSA.

users. Complete build instructions for the Swarmie robot
are publicly available1, and source code of the CPFA2 and
DDSA3 are available on Github.

The targets collected by the robots are soft cubes with
an AprilTag (2D barcode fiducials developed for robotics
applications [38]) on each face. For the first two sets of
experiments, targets were distributed in the arena in clusters
of various sizes with locations determined at random. The
collection zone in the center of the arena was a square area
with AprilTags on its boundary. The camera detected the
AprilTags which were translated into a location in space
relative to the robot’s position. This allows the robot to pick
up targets in the arena and drop them off in the collection
zone. Physical robots used a gripper with an actuated wrist
for grabbing and dropping targets, which was also simulated
in Gazebo. Target collection is an error-prone complex task.
The average number of attempts to pick up a target is
1.85 ± 1.2 in simulation and is 1.96 ± 1.2 in physical
experiments. In physical experiments, although robots at-
tempted to visually confirm that a target was successfully
picked up, robots sometimes drop targets or detect that a
target was collected when it was not. On rare occasions
targets were dropped after a collision or robots would steal
targets from each other. More commonly, once targets were
deposited in the collection zone, robots could accidentally
push them out again. We manually counted and then removed
collected targets from the collection zone to avoid these
accidents. Recognition of targets and the collection zone was

1https://github.com/BCLab-UNM/Swarmathon-Robot
2https://github.com/BCLab-UNM/CPFA-ROS
3https://github.com/BCLab-UNM/DDSA-ROS

9287

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on June 06,2020 at 15:21:41 UTC from IEEE Xplore. Restrictions apply.

impacted by light conditions, particularly the apparent con-
trast between shadows and lighted areas. While the Gazebo
simulation was quite faithful to the rigid body dynamics of
the robot and targets, it could not capture subtle effects of
lighting and the full range of physical interactions between
robots, targets, and the environment.

Localization is a challenge in swarm robotics, particularly
with low-cost robots using error-prone sensors and actuators.
The robots in these experiments use an extended Kalman
filter (EKF) [39] to fuse GPS information and odometry
from aninertial measurement unit (IMU) and wheel encoders
to determine position, orientation, and the locations of the
collection zone and pheromone waypoints. We estimated the
average accuracy of GPS localization to be 0.5m, and we
estimated how the IMU and encoders accumulate drift over
time.

Robots use their front web cameras to detect targets, and
when close to the collection zone, their cameras detect the
AprilTags on the boundary of the collection zone. When
robots arrive at the collection zone, they update their lo-
cations. To approximate the physical experiments, the mag-
nitudes of the noise are generated by Gaussian distributions
N (0.4, 0.5) on GPS receivers, N (0, 0.005) on ultrasound
sensors, N (0, 0.007) on cameras, and (N (0.35, 0.35) on
accelerators, N (0.5, 0.5) on angular rate, and N (0, 0.01) on
heading) of IMUs.

The architecture of the CPFA and DDSA implementation
in ROS is shown in Fig. 2. Our Rover GUI either ran
on a computer hosting Gazebo for a simulated swarm or
connected to the physical robots in the swarm through a
wireless network. The GUI acted as a communicator between
users and robots. The results of the interaction between
robots and objects in the simulation were sent to the ROS
adapter.

Fig. 2: The architecture of the CPFA and DDSA in ROS.

We deconstructed the robot control system into a series
of functional controllers. Each controller was assigned a
specific behavior. To fairly compare the CPFA and DDSA,
we used the same implementation of the pickup, dropoff,
and obstacle avoidance controllers. The deterministic spiral
search and the ant-like stochastic search were implemented in
the search controllers of the CPFA and DDSA, respectively.
Site fidelity and pheromone controllers were only defined in
the CPFA. Site fidelity in the DDSA was incorporated into
the search controller as a feature. Different priorities were

assigned to controllers in different states. Higher priority
controllers subsumed the roles of lower ones by suppressing
their outputs. Robots switched controllers when they change
their states. The logic controller handled transitions among
all the controllers.

The ROS implementations of the CPFA and DDSA were
directly loaded onto the Swarmie onboard Linux computer
for physical robot experiments (see Fig. 3b). A demonstration
video showing the CPFA and DDSA in the simulation and
physical experiments are available on our YouTube playlist4.

VI. EXPERIMENTAL SETUP

We evaluated four experimental configurations to measure
the performance of the foraging algorithms. In the first
two configurations, 128 targets were placed uniformly in a
power-law distribution of cluster sizes which emulated the
distribution of many resources in natural environments [40].
The targets were placed in 1 cluster of 4 × 8 cubes, 2
clusters of 4 × 4 cubes, 8 clusters of 2 × 2 cubes, and 32
single cubes with each cluster location chosen at random.
The first configuration had no obstacles, while the second
configuration had the same distribution of targets and 4
obstacles (1m× 0.5m× 0.5m synthetic rocks). In the third
configuration, 128 targets were placed in lines along the
edges of the four arena walls (2m). In the fourth config-
uration, four 4×8 clusters of targets were placed in the four
corners far (7.43m) from the collection zone. The third and
fourth configurations were designed to be more challenging
with targets far from the center with no obstacles. In every
experiment we placed 4 robots and a collection zone in the
center of a 14m× 14m arena. Robots foraged for 20min
in each experiment.

Table. I summarizes the configurations and replicates of
the experiments. Fig. 3a illustrates an example setup with
obstacles in simulation while Fig. 3b shows the same setup
in a physical experiment. We replicated all experiments 30
times in simulation. Physical experiments were repeated 15
times for the first two configurations (in which the locations
of targets were chosen at random) and 5 times for the third
and fourth configurations (in which targets were placed in
fixed locations).

TABLE I: Experimental Setup and Replicates

Target Simulation Physical
Config. Distribution Obst. replicates replicates

1 Power law No 30 15
2 Power law Yes 30 15
3 Edges No 30 5
4 Corners No 30 5

VII. RESULTS

We used interquartile-range notched box plots to visualize
the statistical relationships between experiments [41]. Non-
overlapping notches indicate the measurements were drawn
from different distributions at the 95% confidence level.

4https://tinyurl.com/yceu6p9b

9288

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on June 06,2020 at 15:21:41 UTC from IEEE Xplore. Restrictions apply.

(a) Simulated Experiment (b) Physical Experiment

Fig. 3: Simulated and Physical experiments with 4 robots,
128 cubes, 4 obstacles and one central collection zone.
Configuration 2 is shown, Target cluster sizes are described
in Table 1, obstacles are placed 3 to 5m from the center, and
the exact location of each obstacle, target and target cluster
is chosen at random.

Results were compared using the Mann-Whitney U test for
simulated experiments and the student’s t-test for physical
experimental results (see [42], the t-test for small sample
sizes). The statistical significance is indicated by asterisks in
figures (*** indicates p < 0.001, ** indicates p < 0.01m,
* indicates p < 0.05, and ’NS’ indicates no statistical
difference). The notches in the boxes indicate the 95%
confidence interval of the medians.

The foraging performance of the DDSA and CPFA in
simulated and physical experiments, with and without ob-
stacles, is shown in Fig. 4. In simulations, the median
number collected by the DDSA was 18% higher than the
CPFA without obstacles (the U test two-tailed p-value was
p = 0.0002), and it was 26% higher than the CPFA with
obstacles (p = 0.01). In physical experiments, the CPFA was
25% higher than the DDSA (p = 0.04) without obstacles and
there was no significant difference with obstacles.

Fig. 4: Foraging performance of the DDSA and CPFA with
and without obstacles, for 30 trials in simulation, and 15
trials in physical experiments using configurations 1 and 2
(shown in Fig. 3).

In the simulation, when resources were placed in the
corners (configuration 4) the DDSA collected 26% more than
the CPFA, with no difference between the two algorithms

with resources placed along the edges of the arena. There
was no significant difference between algorithms in either
configuration 3 or 4 in physical experiments (shown in
Fig. 5).

Fig. 5: Foraging performance with cubes lined to the edges
and clustered in corners.

Fig. 6 summarizes the foraging performance across all
experiments (240 simulations and 80 physical experiments).
The DDSA collects 20% more targets than the CPFA in
simulation, but there is no significant difference in physical
environments. DDSA performance decreases more dramati-
cally in physical experiments: the DDSA is 163% better in
simulated vs. physical experiments, while the CPFA is only
95% better in simulated vs. physical experiments.

Fig. 6: Overall foraging performance with all experiments.

Fig. 7 shows traces of robots executing the CPFA and
DDSA in different configurations. Panels (a) to (d) demon-
strate baselines where each algorithm ran for 5min without
targets and obstacles. The traces in panels (a) and (c)
illustrate the stochastic search pattern of the CPFA and
the interlocking spiral pattern of the DDSA in simulation.
The search patterns are still clear even with some drift in
physical experiments without targets or obstacles (see (b)
and (d)). Panels (e) to (h) demonstrate traces given targets
and obstacles. In the simulations (see (e) and (g)), the
characteristic search patterns of the CPFA and DDSA are

9289

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on June 06,2020 at 15:21:41 UTC from IEEE Xplore. Restrictions apply.

still evident, even though they are disrupted by direct paths
to and from targets and empty regions outlining where targets
are placed. However, in panel (h), the deterministic spiral is
no longer visible because it is disrupted by robots interacting
with each other, targets, and obstacles. In real environments
with obstacles, the traces from the DDSA appear as random
as those from the CPFA.

(a) No targets or obstacles, CPFA sim.(b) No targets or obstacles, CPFA phy.

(c) No targets or obstacles, DDSA
sim.

(d) Targets or obstacles, DDSA phy.

(e) Targets and obstacles, CPFA sim. (f) Targets and obstacles, CPFA phy.

(g) Targets and obstacles, DDSA sim.(h) Targets and obstacles, DDSA phy.

Fig. 7: Odometry traces of 4 robots in simulation (left
column) and physical experiments (right column). Each robot
path is a different colored line. Obstacles are not shown, but
the empty areas in (e) and (g) imply their location.

VIII. DISCUSSION

In a perfect environment without error or noise the DDSA
outperforms the CPFA by collecting more targets in a fixed

time period. In the CPFA, the movement is random and some
locations are visited multiple times while others are never
visited at all. The DDSA guarantees complete coverage of
the entire arena given sufficient time, and each location is
visited only once. Our experiments in simulation confirm
this expectation: the DDSA outperforms the CPFA (Fig. 4),
even when the simulation includes physical interactions,
collision avoidance, and some sensing and localization error.
Even with resource placements far from the arena center,
specifically designed to be difficult for the DDSA, it performs
as well as or better than the CPFA in simulations (Fig. 5)

Not surprisingly, foraging performance was higher in both
algorithms in simulations compared to physical experiments
(Fig. 4 and Fig. 5). In prior ARGoS simulations [6], the
DDSA collected targets 34% faster than the CPFA. Here our
simulations include more realistic object pickup and dropoff
and the complex physics of the Swarmie platform. In these
simulations, the DDSA performed only 20% better than the
CPFA (Fig. 6). The DDSA was no better than the CPFA in
physical experiments, and in fact, the CPFA outperformed the
DDSA in physical experiments without obstacles (Fig. 4). As
more realism is included, the CPFA becomes as good as, or
better than, the DDSA.

To understand why stochasticity affects performance, we
recorded odometry traces of robots in simulation and phys-
ical robots. Without targets or obstacles in the arena, the
essence of the stochastic CPFA and the DDSA spirals were
evident in the odometry traces of physical robots (Fig. 7(b)
and (d)). However, in contrast to the simulated traces, once
targets and obstacles were placed in physical arenas, the
DDSA spirals were disrupted so much that they were no
longer distinguishable in robot paths (Fig. 7(f) and (h)).

There are multiple factors that can cause the deterministic
movement of the DDSA to appear as stochastic as that of
the CPFA: noisy sensors, actuator drift, positional noise from
odometry and GPS. The search pattern of the CPFA is also
altered by these factors, but it is less relevant since the CPFA
search pattern is random by design. The advantage of the
CPFA is that it is designed for effective foraging under the
assumption that robot movement is random. Thus, it is less
impacted by real-world factors that degrade the DDSA, to
the point of making it appear effectively random.

Interestingly, the noise in physical experiments generated
stochastic robot movement even when the underlying algo-
rithm was deterministic. This suggests that when robotic al-
gorithms are inspired by biological observations, care should
be taken to understand whether the biological behaviors are
inherently stochastic or if they only appear so because they
are observed in noisy natural environments.

ACKNOWLEDGMENTS

We are grateful to NASA Swarmathon teams for improved
implementations of foraging algorithms in Swarmies, and
we thank Jarett Jones, Manuel Meraz, Kelsey Geiger, Tobi
Ogunyale, William Vining, Vanessa Surjadidjaja, and John
Ericksen with development, testing and editing.

9290

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on June 06,2020 at 15:21:41 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Alan F. T. Winfield. Foraging Robots. Encyclopedia of Complexity
and Systems Science, New York, NY, 3682-3700, 2009.

[2] Manuele Brambilla, Eliseo Ferrante, Mauro Birattari, and Marco
Dorigo, Swarm robotics: a review from the swarm engineering per-
spective. Swarm Intelligence, 7(1):1-41, 2013.

[3] Erol Şahin. Swarm Robotics: From Sources of Inspiration to Domains
of Application. Swarm Robotics: SAB 2004 International Workshop,
Springer Berlin Heidelberg, 3342:10-20, 2005.

[4] J. P. Hecker and M. E. Moses, Beyond pheromones: evolving error-
tolerant, flexible, and scalable ant-inspired robot swarms, Swarm
Intelligence, Springer US, 9(1):43-70, 2015.

[5] Eliseo Ferrante, Ali E. Turgut, Edgar Duez-Guzmn, Marco Dorigo and
Tom Wenseleers. Evolution of Self-Organized Task Specialization in
Robot Swarms, PLOS Computational Biology, 11(8), 2015.

[6] G. Matthew Fricke, Joshua P. Hecker, Antonio D. Griego, Linh
T. Tran and Melanie E. Moses. A distributed deterministic spiral
search algorithm for swarms. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2016), South Korea, 2016.

[7] Carlo Pinciroli, Vito Trianni, Rehan O’Grady, Giovanni Pini, and et
al. ARGoS: a modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence, 6:271-295, Springer. Berlin, Germany,
2012.

[8] Roman Frigg and Stephan Hartmann. Models in science. The Stanford
encyclopedia of philosophy. Stanford University. Spring 2012.

[9] Nick Jakobi, Phil Husbands, and Inman Harvey. Noise and the
reality gap: The use of simulation in evolutionary robotics. European
Conference on Artificial Life. Berlin, Heidelberg, 704-720, 1995.

[10] Jean-Baptiste Mouret, Sylvain Koos, and Stéphane Doncieux. Crossing
the Reality Gap: a Short Introduction to the Transferability Approach,
CoRR, 2013.

[11] Morgan Quigley, Ken Conley, Brian Gerkey, and et al. ROS: an open-
source Robot Operating System. ICRA Workshop on Open Source
Software, 2009.

[12] Nathan Koenig and Andrew Howard. Design and use paradigms for
gazebo, an open-source multi-robot simulator.Intl. conf. IROS, 3:2149-
2154, 2004.

[13] Brian P. Gerkey, Richard T. Vaughan and Andrew Howard. The
Player/Stage Project: Tools for Multi-Robot and Distributed Sensor
Systems. In Proceedings of the 11th International Conference on
Advanced Robotics, 317-323, 2003.

[14] Wenguo Liu, Alan F. T. Winfield, Jin Sa, Jie Chen and Lihua Dou.
Towards Energy Optimization: Emergent Task Allocation in a Swarm
of Foraging Robots. Adaptive Behavior, 15(3):289-305, 2007.

[15] Eduardo Castello, Tomoyuki Yamamoto, Fabio D. Libera, Wenguo
Liu, Alan Winfield, Yutaka Nakamura, and Hiroshi Ishiguro. Adap-
tive foraging for simulated and real robotic swarms: the dynamical
response threshold approach, Swarm Intelligence, 10(1):1-31, 2016.

[16] G. Pini, A. Brutschy, A. Scheidler, M. Dorigo and M. Birattari, Task
Partitioning in a Robot Swarm: Object Retrieval as a Sequence of
Subtasks with Direct Object Transfer, in Artificial Life, 20(3):291-
317, July 2014.

[17] Edgar Buchanan, Andrew Pomfret, and Jon Timmis. Dynamic Task
Partitioning for Foraging Robot Swarms. International Conference on
Swarm Intelligence. 9882. 113-124, 2016.

[18] N. R. Hoff, A. Sagoff, R. J. Wood and R. Nagpal, Two foraging
algorithms for robot swarms using only local communication, 2010
IEEE International Conference on Robotics and Biomimetics, Tianjin,
2010, pp. 123-130.

[19] Paul E. Rybski, Amy Larson, Harini Veeraraghavan, Monica An-
derson, and Maria Gini. Performance Evaluation of a Multi-Robot
Search & Retrieval System: Experiences with MinDART. Journal of
Intelligent and Robotic Systems, 52(3):363-387, 2008.

[20] A. Rosenfeld, N. Agmon, O. Maksimov, and S. Kraus, Intelligent
agent supporting human-multi-robot team collaboration, Artificial In-
telligence, 2017.

[21] D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, and
M. Egerstedt, The Robotarium: A remotely accessible swarm robotics
research testbed, in Robotics and Automation (ICRA), 2017 IEEE
International Conference on. IEEE, 2017, pp. 16991706.

[22] A. Brutschy, L. Garattoni, M. Brambilla, G. Francesca, G. Pini, M.
Dorigo, and M. Birattari, The TAM: abstracting complex tasks in
swarm robotics research, Swarm Intelligence, 9(1):1-22, 2015.

[23] M. Rubenstein, C. Ahler, N. Hoff, A. Cabrera, and R. Nagpal, Kilobot:
A low cost robot with scalable operations designed for collective
behaviors, Robotics and Autonomous Systems, 62(7):966975, 2014.

[24] Simon Jones, Matthew Studley, Sabine Hauert, and Alan F. T. Win-
field. Evolving Behaviour Trees for Swarm Robotics, 487-501, 2018.

[25] J. Enright and P. R. Wurman, Optimization and Coordinated Autonomy
in Mobile Fulfillment Systems. in Automated action planning for
autonomous mobile robots, 2011, pp. 3338.

[26] M. Dorigo, D. Floreano, L. M. Gambardella, F. Mondada, S. Nolfi, T.
Baaboura, M. Birattari, M. Bonani, M. Brambilla, and A. Brutschy,
Swarmanoid: a novel concept for the study of heterogeneous robotic
swarms, IEEE Robotics & Automation Magazine, 20(4):6071, 2013.

[27] Deborah M. Gordon and A. W. Kulig. Founding, Foraging, and
Fighting: Colony Size and the Spatial Distribution of Harvester Ant
Nests. Ecological Society of America, 77(8):2393-2409, 1996.

[28] T. P. Flanagan, K. Letendre, W. R. Burnside, G. M. Fricke, and M. E.
Moses, Quantifying the Effect of Colony Size and Food Distribution
on Harvester Ant Foraging. PLoS ONE, 7(7):1-9, July 2012.

[29] Jennifer H. Fewell. Directional fidelity as a foraging constraint in
the western harvester ant, Pogonomyrmex occidentalis. Oecologia,
82(1):45-51, 1990.

[30] David J. T. Sumpter and Madeleine Beekman. From nonlinearity
to optimality: pheromone trail foraging by ants. Animal behaviour,
66(2):273-280, 2003.

[31] Duncan E. Jackson, Steven J. Martin, Francis L. W. Ratnieks and Mike
Holcombe. Spatial and temporal variation in pheromone composition
of ant foraging trails. Behavioral Ecology, 18(2):444-450, 2007.

[32] Qi Lu, Joshua P. Hecker and Melanie E. Moses. The MPFA:
A multiple-place foraging algorithm for biologically-inspired robot
swarms, IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2016), Daejeon, South Korea, 2016.

[33] J. L. Bentley, B. W. Weide, and A. C. Yao, Optimal expected-
time algorithms for closest point problems, ACM Transactions on
Mathematical Software (TOMS), 6(4):563-580, 1980.

[34] R. A. Baeza-yates, J. C. Culberson, and G. J. E. Rawlins. Searching
in the plane. Information and computation, 106(2):234-252, 1993.

[35] G. Matthew Fricke, Diksha Gupta and Melanie E. Moses. Biologically-
Inspired Distributed Spatial Search for Ground-Based Foraging
Swarms, 5th Annual Biological Distributed Algorithms (BDA) Work-
shop, Washington, DC, 2017.

[36] N. Koenig and A Howard. Design and use paradigms for Gazebo, an
open-source multi-robot simulator. IEEE/RSJ International Conference
on Intelligent Robots and Systems, 3:2149-2154, 2004.

[37] Sarah M. Ackerman, G. Matthew Fricke, Joshua P. Hecker, Kastro M.
Hamed, Samantha R. Fowler, Antonio D. Griego, Jarett C. Jones J.
Jake Nichol Kurt W. Leucht and Melanie E. Moses. The Swarmathon:
An Autonomous Swarm Robotics Competition. Swarms: From Biol-
ogy to Robotics and Back at the IEEE International Conference on
Robotics and Automation (ICRA) workshop, 2018.

[38] E. Olson. AprilTag: A robust and flexible visual fiducial system. 2011
IEEE Intl. Conf. on Robotics and Automation, 3400-3407, 2011.

[39] Thomas Moore and Daniel Stouch. A Generalized Extended Kalman
Filter Implementation for the Robot Operating System. Intelligent
Autonomous Systems 13, 335-348, Cham, 2016.

[40] Mark E. Ritchie. Scale, Heterogeneity, and the Structure and Diversity
of Ecological Communities. Berlin, Boston, 2009.

[41] Robert McGill, John W. Tukey, and Wayne A. Larsen. Variations of
Box Plots. The American Statistician, 32(1):12-16, 1978.

[42] J. De Winter. Using the Students t-test with extremely small sample
sizes. Practical Assessment, Research and Evaluation, 1-12, 2013.

9291

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on June 06,2020 at 15:21:41 UTC from IEEE Xplore. Restrictions apply.

