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Machine Learning Feature Analysis Illuminates Disparity Between
E3SM Climate Models and Observed Climate Change

J. Jake Nichol, Matthew G. Peterson, Kara J. Peterson,
G. Matthew Fricke, Melanie E. Moses

• Machine learning models are useful for learning about observed and
simulated climate data, allowing us to compare what is learned from
each.

• Random forest regression models were able to learn the data and pro-
vide a means for analyzing the data’s feature importance.

• Using Gini importance, we found some key di↵erences between climate
simulations (E3SM) and observed data, i.e. June and July sea ice
volume and August sea ice extent are too influential on simulations.
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Abstract

In September of 2020, Arctic sea ice extent was the second-lowest on
record. State of the art climate prediction uses Earth system models (ESMs),
driven by systems of di↵erential equations representing the laws of physics.
Previously, these models have tended to underestimate Arctic sea ice loss.
The issue is grave because accurate modeling is critical for economic, ecologi-
cal, and geopolitical planning. We use machine learning techniques, including
random forest regression and Gini importance, to show that the Energy Ex-
ascale Earth System Model (E3SM) relies too heavily on just one of the ten
chosen climatological quantities to predict September sea ice averages. Fur-
thermore, E3SM gives too much importance to six of those quantities when
compared to observed data. Identifying the features that climate models in-
correctly rely on should allow climatologists to improve prediction accuracy.
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1. Introduction

We have observed dramatic declines in Arctic sea ice since the advent of
satellite imaging [1]. This change is of critical importance to global economic,
social, political, and ecological landscapes, not least because of the opening
of new navigable sea routes and the impact on wildlife [2, 3]. As an essential
component of the Earth’s climate, sea ice loss drives the positive feedback
between surface albedo and Arctic warming and may contribute to changes
in ocean circulation and mid-latitude weather [4, 5, 6, 7].

Earth system models (ESMs) provide state of the art simulations of the
global climate. They include general circulation and thermodynamic mod-
els for ocean and atmosphere, and models for land, sea ice, and land ice
processes. Collecting an ensemble of parameterized ESM runs produces a
distribution of forecasts that provide bounds on predictions. Simulations of
Arctic sea ice in these models include complex interactions between the ice,
ocean, and atmosphere. However, limitations in ESMs, such as the inability
to resolve critical small-scale processes, can lead to biases when compared to
observations. It is, therefore, critical to identify sources of bias.

Previous generations of ESMs have, on average, underestimated the rate
of sea ice loss in the Arctic [8]. This is apparent in data from the Coupled
Model Intercomparison Project (CMIP), which includes simulation results
from a broad array of ESMs from modeling centers around the globe. CMIP
phases mark improvements in the state of the art. The extent of sea ice loss
has been a consistent problem, first identified in phase 3 [9, 10]. By phase
5 (CMIP5), overall model bias had improved [11]. However, Rosenblum and
Eisenman [8], in an analysis of 118 simulation runs from 40 CMIP5 simu-
lations, found that 89% of CMIP5 model runs underpredicted the rate at
which sea ice extent is lost (km2/decade) by more than a standard devia-
tion; and 2014 loss by an average of 2 million km2. The disagreement with
observation may imply that ESMs’ parameters are not well-tuned. Stroeve
et al. [10] suggest this discrepancy is due to missing key causal mechanisms
or represent a misunderstanding of underlying physical processes.

The Energy Exascale Earth System Model (E3SM) [12], developed by
the United States Department of Energy (DOE), is included in phase 6
(CMIP6) [13] (March 2019). E3SM is a new state of the science climate
modeling and prediction project. In CMIP5 and E3SM, the rates of pan-
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Arctic sea ice change are similar to observation before 1996 but deviate from
observation afterward. In CMIP5’s case, the rate of loss is less than observed
[8], while E3SM’s is greater than observed (Section 3.1: Data). These dif-
ferences in sea ice loss rates lead to inaccurate long term predictions about
absolute sea ice extent in the Arctic. To our knowledge, our work is the first
mechanistic analysis of E3SM accuracy.

We use random forest regression (RFR) [14] and Gini importance [15]
to determine which E3SM features drive climate predictions. We perform
an identical study of historical observations to identify the features that
are most influential on prediction of actual sea ice loss. By comparing the
two, we determined that E3SM relies too heavily on some features, to the
detriment of others, resulting in a divergence from observation. This work
elucidates di↵erences in sea ice response between observational data and
E3SM simulations and can help improve sea ice prediction.

2. Related Work

Stroeve et al. [16] analyze the agreement between simulated Arctic mod-
els, CMIP3 and CMIP5, and observed data. They report that while phase
5 models are an improvement over phase 3 they consistently overestimate
forecasted ice extent in the Arctic. The authors suggest that modeling may
be improved by including more complex mechanisms such as sea ice albedo
parameterization, thickness distributions, and melt ponds.

Rosenblum and Eisenman [8] examined CMIP5’s sea ice extent predic-
tions in the Arctic and found overprediction of sea ice extent. Correcting the
models required an increase in warming well above observed rates, leading
the authors to conclude that the current methods were systematically flawed.

Ionita et al. [17] presented a method for using multiple linear regression to
predict the September sea ice extent minimums in the pan-Arctic region and
the East Siberian Sea. Notably, they used step-wise regression because it may
highlight the underlying coupled physical mechanisms between factors. For
the pan-Arctic region, their model was able to predict sea ice extent anomalies
for May, June, and July fairly accurately (reporting r-values between 0.84 and
0.9). Although they found a “skillful” model could be built from their list of
Arctic features, they did not analyze the relative importance of those features
for their models.

Reid and Tarantino used support vector regression (SVR) to predict the
Arctic sea ice extent [18]. SVRs were able to construct predictive models,
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but they only considered sea ice extent as a predictor and could not analyze
any other features for their importance. They chose SVRs because they are
successful in predicting complex dynamical systems such as climate. The
authors reported the comparative results of tuning the SVR, and compared
them to CMIP5 ensembles but not to observation.

3. Data and Methods

Our methods were able to account for discrepancies in climate simula-
tions and observations. Like multiple linear regression and its associated
term-weights, random forests are a machine learning method that is wholly
transparent [14], unlike many other so-called “black box” methods, such as
SVRs. We used RFRs and their corresponding Gini importance measure to
determine how much influence each input feature has on E3SM predictions.
With those tools, we analyzed each feature’s impact on historical sea ice
extent and used that information to highlight discrepancies with E3SM.

3.1. Data

Our machine learning (ML) models used monthly averages of June, July,
and August data from the atmosphere, ocean, and sea ice to predict Septem-
ber sea ice extent for a given year. Results from observational and reanalysis
data products are then compared against results from five ensemble members
of the E3SM historical dataset. The features our ML models are trained on
are a subset of physical quantities simulated by E3SM in the Arctic. We
chose these features because they match observable features in nature and
that we hypothesized would be good predictors of sea ice loss. Each feature
of each dataset is a time series beginning with the start of the satellite era
in 1979 and ending with the last year of available E3SM output, 2014.

The observational data included monthly sea ice extent computed from
gridded, daily, passive-microwave satellite observations of sea ice concentra-
tion provided by the National Snow & Ice Data Center [19]. Sea ice concen-
tration is a percentage value of ice in each grid cell, and sea ice extent (SIE)
is computed as the total area of cells containing more than 15% ice. Sea ice
volume reanalysis data were provided by the Pan-Arctic Ice Ocean Modeling
and Assimilation System [20]. Atmospheric data (total cloud cover percent-
age (CLT), downward longwave flux at surface (FLWS), pressure at the sur-
face (PS), near-surface specific humidity (SSH), temperature at the surface
(TS), wind u component/zonal (uwind), and wind v component/meridional
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Table 1: Training Features and June Data Excerpt: total cloud cover percentage
(CLT), downward longwave flux at surface (FLWS), pressure at the surface (PS), sea
ice extent (SIE), sea ice volume (SIV), near-surface specific humidity (SSH), sea surface
temperature (SST), temperature at the surface (TS), wind u component/zonal (uwind),
and wind v component/meridional (vwind). Values listed are means over the pan-Arctic
grid for each day of the month, rounded to two-decimal places for display only.

June Sept.
CLT FLWS PS SIE SIV SSH SST TS uwind uwind SIE

Year (%) (W/m2) (Pa) (106km2) (106km3) (mg/kg) (�C) (�C) (m/s) (m/s) (106km2)
1979 42.08 256.56 97 930 12.53 29.79 4.31 0.56 273.46 0.94 0.48 5.90
1980 40.89 259.51 97 901 12.20 29.15 4.44 0.68 274.67 0.99 0.47 6.83
1981 40.47 258.13 98098 12.43 26.82 4.27 0.65 274.27 0.06 0.06 6.40

...
...

...
...

...
...

...
...

...
...

...
...

2012 40.36 271.60 98 105 10.67 16.00 5.12 1.39 277.28 �0.03 �0.06 3.55
2013 40.66 266.93 97 989 11.36 17.54 4.98 1.26 276.50 0.93 0.42 5.27
2014 39.84 263.94 98.19 11.03 17.68 4.72 1.47 275.67 0.00 0.04 5.38

(vwind)) were from an atmosphere reanalysis provided by the National Cen-
ters for Environmental Prediction [21]. Sea surface temperature (SST) was
provided by the National Oceanic and Atmospheric Administration [22]. For
each of the atmospheric data variables, as well as SST, monthly Arctic area
averages were computed from the global gridded fields.

We used the DOE’s E3SM for climate simulation data in this work [12, 23].
E3SM version 1 was a fork of the community Earth system model [24], which
was a part of the CMIP5 collection analyzed by Rosenblum and Eisenman
[8]. E3SM is a global model comprised of submodels for land, atmosphere,
land ice, sea ice, oceans, and rivers. Specifically, we used data from E3SM’s
historical ensembles 1-5 at one-degree global resolution.

E3SM published five historical ensemble runs to o↵er a distribution of
forecasts. The runs were initialized from di↵erent years of a 500-year pre-
industrial control simulation. The historical runs start in 1850, running for
165 years to 2014. The final 36 years, 1979 to 2014, were used in our anal-
ysis to match the years of observed data. Small di↵erences in each run’s
initial conditions can significantly impact long-term results, though average
behavior between runs is expected to be consistent.

Table 1 summarizes the observed features we collected; an excerpt of June
values is included. Each feature is a time series of the feature’s mean in a
given month from 1979 to 2014. Values in the time series are an area-sum
over the pan-Arctic oceanic region. Each feature’s monthly data is a mean
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of every Arctic sample in the given month, resulting in a single value per
month. Generally, the observational and reanalysis datasets have similar
magnitudes to the simulation data. However, for CLT, the NCEP reanalysis
is significantly lower than the E3SM data. This is a known bias in the
NCEP reanalysis data, and future work could investigate feature analyses of
alternative reanalysis datasets [25].

The data used in this work is publicly available on the E3SM website.
The five historical ensemble runs were retrieved from the v1 one-degree data
CMIP6 release. To disambiguate them from our machine learning models
and observed data, we will refer to E3SM’s historical ensembles 1-5 as sim-
ulations 1-5, simulation runs, or simply E3SM runs for the remainder of this
paper. Figure 1 shows a comparison of the observed and simulation datasets
evaluated in this work.

Figure 1: Comparison of observed, pan-Arctic mean September sea ice extent with pre-
dictions from E3SM’s historical ensembles 1-5. The mean of E3SM simulations is shown
with 95% confidence interval (shaded).

3.2. Random Forests
We found that linear models performed poorly on our data. For this work,

we used RFR models because they are relatively simple, intuitive models that
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can learn nonlinear relationships between features. As a part of their training,
the decision trees in random forests generate Gini impurity measures. These
measures are aggregated after training to determine the Gini importance of
each feature. In our case, we computed importance as the total reduction in
mean absolute error (MAE) caused by each feature.

RFR is an ensemble learning technique, similar to a combination of boot-
strap aggregation (bagging [26]) and decision tree regression. Bagging is a
method to combine the knowledge of many naive estimators, or trees in our
case, by providing a subset of the full sample set to each estimator. The re-
sult is the average of many noisy, but unbiased, estimators, reducing overall
variance. Random forests improve the bagging method by choosing random
subsets of the feature set for each node split in every tree [27]. The number
of random features each node considers, and when to split are tuned hyper-
parameters. The final forest’s estimate is the average prediction from the
random trees.

For N trees, T1, ..., TN , random forest regression prediction is computed
as follows:

RF (N) =
1

N

NX

n=1

Tn(x)

given the training sample, x.
The random forest implementation we used was the random forest re-

gressor from Python’s sci-kit learn package [28]. The implementation uses a
perturb and combine technique [29] made for tree regressors. Perturb and
combine reduces test set error by introducing a diverse set of regressors via
randomized regressor construction. For the rest of the data analysis, we used
Python’s Numpy package [30]. We utilized Python’s Seaborn package [31]
for data visualization.

3.3. Pre-Processing

To prepare the data for training, we split it into training and testing
years. Our goal was not to develop predictive models for next year’s sea ice
extent. We were more interested in finding models that have learned the
data well that we then used for feature analysis. Thus, we split the training
and testing data randomly.

Because some years are easier to forecast than others, we should model
every combination of training and testing years. For 36 total years and
18 testing years, we computed

�
36
18

�
= 9 075 135 300 total combinations of
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training and testing years. Since it is infeasible to train that many models
and evaluate each feature’s importance, we used this standard method to
compute a sample size:

(z-score)2 ⇥ � ⇥ (1 � �)

e

with a z-score computed with 95% confidence, e = 5% margin of error,
and standard deviation �, which yielded 385 sample sets on which to train
and test our models. We illustrate with 18 testing years because it is the
maximum value of

�
36
X

�
, X 2 [1, 36].

Decision trees, and thus random forests, are scale-invariant [32]. This
means that although our data varies greatly in scale between, for example,
sea ice extent, in millions of km2, and wind speeds, less than 1 m/s, the mod-
els’ accuracy is una↵ected. This is an advantage over many other ML models,
and we can leave the data generally untouched. However, random forests ex-
trapolate poorly for data outside of their training’s minimum and maximum
values [33]. This presented a problem for our analysis of the dataset because,
as shown in Figure 1, the latter third of the data has values generally lower
than any in the first two thirds. We detrended training and testing data
separately to mitigate that problem by forcing the data to have a zero mean.
After training and fitting our models, we retrended the data and the model’s
predictions to evaluate their error.

3.4. Model Training and Hyper-Parameter Tuning

Finally, we trained RFR models on the data the training splits provided.
Note that the trees in our forests were allowed to grow until all leaves were
pure, even if they contained a single sample. Decision trees are often pruned
to reduce overfitting, but Breiman [34] suggests letting trees grow fully in
random forests to boost accuracy and increase ensemble diversity. Banfield
et al. [35, 27] also discuss ensemble size in random forests and conclude that
many more trees are necessary than are typically used. Ensemble size is an
important hyper-parameter to tune because the number of trees in the forest
directly impacts the possible feature sets the forest can explore, and too
many trees can reduce a random forest’s performance while also sacrificing
run-time. Our forests comprised 250 decision trees. The number of trees
was determined empirically. Forests of size 10, 50, 100, 250, 500, and 1000
trees were evaluated and their performance was measured on the basis of the
test R2 (average R2) and average test anomaly correlation coe�cient (ACC),
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which are detailed in Section 3.6. We found that 250 tree models maximized
R2 and ACC. Lastly, the trees in each forest used mean squared error as
their nodes’ splitting criterion.

3.5. Feature Importance Measurement

We used Gini importance because of the non-linearities in climate data;
in particular, Gini importance is not susceptible to data multicollinearities.
Given that all of our features come from the same complex system, it would
be di�cult to eliminate features by simple correlation measures. In standard
usage, Gini importance is normalized to compare relative importance within
a single dataset. We chose to preserve the absolute importance values, letting
us compare across datasets.

We also considered drop-column and permutation importance methods
[14]. However, we found them to be unsuitable because they are highly
susceptible to multicollinearity. Because many physical processes are directly
acting on each other, Arctic features are inherently correlated, and any leave-
one-out importance method will highlight that correlation. We found that
the correlation leads these methods to attribute more importance to the least
correlated feature, and it becomes di�cult to glean meaningful insights.

3.6. Model Evaluation

We used the R2 (coe�cient of determination) from the Nash-Sutcli↵e
e�ciency definition, given by:

R2(ŷ, y) = 1 �
P

(y � ŷ)2

P
(y � y)2

,

where y are the true values, ŷ are the predicted values, and y is the mean of
y. This definition has a range of (� inf, 1] where 1 is the best possible score.

In addition to R2, we evaluated model performance with average MAE
(MAE) and ACC. Again, average here means the mean value measured in
385 models with random training and testing year splits. Since MAE is in
millions of km2, we took the Sea Ice Outlook’s 2019 season report [36] as a
baseline. This report includes several di↵erent types of data-driven models
and presents one-year forecasts. These should have less error than ours, given
how many more years we forecasted at once. With the exception of a few
outliers between 2012 and 2019, sea ice forecast error was between �0.4 and
0.6 million km2.
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Figure 2: June feature importance. Standard box-and-whisker plot [37] of values for 13
predictions generated by 385 models. The average R2, anomaly correlation coe�cient
(ACC), and mean absolute error (MAE) are displayed in the gray boxes. The blue line in
each dataset is the mean importance of a random variable in each feature set.

ACC is the Pearson’s correlation coe�cient (r-value) of sea ice extent
anomalies. A time series’ anomaly is a measure of the data’s deviation from
its climatology. In our case, the climatology is the mean value of the true
values the models are attempting to forecast. This function is defined by:

ACC(ŷ, y) =

P
[(ŷ � y)(y � y)]

M ⇥ �ŷ ⇥ �y

where y are the true values, ŷ are the predicted values, M is the number of
samples in y and ŷ, y is the mean or climatology of y, �ŷ is the standard
deviation of the predicted values, and �y is the standard deviation of the true
values.

4. Results

Our goal is to learn the importance of climate features on the predictions
made by E3SM and compare that to the actual importance of those features
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Figure 3: July feature importance. Standard box-and-whisker plot [37] of values for 13
predictions generated by 385 models. The average R2, anomaly correlation coe�cient
(ACC), and mean absolute error (MAE) are displayed in the gray boxes. The blue line in
each dataset is the mean importance of a random variable in each feature set.

on observed sea ice extent. We found that was best accomplished by training
RFRs on 23 uniformly randomly chosen years and testing with the remaining
13. Our performance measure was based on the mean of R2 scores among
datasets for the June input data. This train-test-split resulted in maximum
and minimum R2 scores of 0.88 and 0.77, respectively, yielding a measure of
0.83. R2 denotes the average R2 of the 385 models.

We replicated our analysis for each month between June and August, pre-
dicting September SIE. Each subsequent month generates less error. Within
each dataset, each feature’s relative importance changes. Some features’ im-
portance is correlated with the progression of months, while others appear
to change randomly.

Figure 2 shows June’s feature importance values. The average train and
test error values indicate that the models generally learn the data well. The
blue line shows the mean feature importance of a random variable included
in each model’s feature set. The random variable indicates a lower bound on
importance; any feature with an importance value near this line has virtually
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Figure 4: August feature importance. Standard box-and-whisker plot [37] of values for
13 predictions generated by 385 models. The average R2, anomaly correlation coe�cient
(ACC), and mean absolute error (MAE) are displayed in the gray boxes. The blue line in
each dataset is the mean importance of a random variable in each feature set.

no importance. We found that adding a random variable decreases individual
model performance, but the e↵ect is minimized when taking the mean over
every model.

There are some similarities between each dataset. They share the same
list of six important features, though their order and magnitudes di↵er. SIV
is consistently the most important, though the degree of absolute importance
varies. SIV, TS, SSH, SIE, FLWS, and SST are important in each dataset.
The datasets, except for simulation 3, share the same list of unimportant
features as well. These are CLT, PS, uwind, and vwind. One apparent
exception is June’s PS in Figure 2: simulation 3; however, excluding PS
from the training data, results in a negligible di↵erence in R2 (0.7681 vs.
0.7682).

July features, shown in Figure 3, predicted as well or better than June in
each of our error metrics; simulation 3 had the lowest R2, 0.78, and simulation
2 had the highest, 0.88. The same features were important in July as in June,
but the relative importance values changed. June’s sea ice extent became
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more important in the observed dataset, surpassing the importance of SIV.
SSH became less important in the observed dataset, too, settling just above
the random variable. SSH remained as important in the simulation datasets.

The most dramatic change in importance occurs in August. These results
are in Figure 4. Error was significantly better with simulations 3 and 4 having
the minimum R2, 0.87, and simulations 1 and 2 having the maximum, 0.91.
In August, sea ice extent was always the most important. The importance
values of the remaining features generally changed very little throughout
datasets.

5. Discussion

We found that our RFR ML models were able to accurately learn each of
the datasets. After examining the Gini importances computed within each
model, we discovered some key di↵erences in how each dataset relates to
September pan-Arctic sea ice extent.

A problem with our dataset is that the satellite record only goes back
to 1979. One solution is to adapt the models to forecast sea ice extent con-
tinuously throughout each year. This is in line with Reid and Tarantino’s
approach [18] (see Section 2), but with random forests instead of support vec-
tor machines and including many features instead of only sea ice extent. The
models would train on the full year of data and see 432 data points rather
than 36 in the time series. Several observed features are measured more
frequently than monthly, some every few hours of every day, so a means to
incorporate inconsistent sampling resolutions of features should be investi-
gated to leverage all of the data available. Another solution could be to use a
surrogate model to generate more data that is similar to the first 15 years of
observed data, which have a much flatter trend. The surrogate model would
let the new data agree with what the model learns about input features.

The combined error metrics and general consistency of results between
each dataset suggests that our models have learned the data well, and the
feature analysis can identify key patterns. It is meaningful that the same six
features are considered important across datasets and input-months. Since
our analysis is of the pan-Arctic region, it is possible that the set of unimpor-
tant features would be more important in specific subregions of the Arctic.

Though the most important feature in June and August is consistent be-
tween simulation and observation, the absolute importance di↵ers markedly.
One clear pattern is that June shows an acute reliance on sea ice volume for
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both observations and simulations. By August the reliance is traded for sea
ice extent. This finding is consistent with earlier studies evaluating sea ice
predictability using lag-correlation analyses with ESM ensemble data [38, 39].

Although the observed and simulated data share patterns, there is a clear
di↵erence between them. In July, simulations and observed data do not agree
on the most important feature. In June, July, and August, simulated data
relies too heavily on almost all the important features. In each dataset,
importance values diminish for the remaining features in June and July, and
their distributions overlap more than they did in June, but the observed
dataset still shows the least importance in FLWS, SSH, TS, and SST.

Interestingly, simulations 1 and 2 forecasted with the highest R2 each
input month, and simulations 3 and 4 had the lowest R2 in each input month.
Simulations 1 and 2 have the lowest MAE and highest ACC among the
simulation runs, and 3 and 4 have the highest MAE and lowest ACC among
the simulations runs. Although the di↵erences are small, these consistencies
may indicate some commonality between these simulation runs.

Our ML models performed better on the observed data than on the sim-
ulations as measured by MAE and ACC, but is not reflected in R2. That
suggests that the mean value, or the trend after retrending, was very pre-
dictable, but its intervariability, which R2 explains, was less predictable. The
likely explanation is in the di↵erence in the complexity of the systems. Ob-
served features of the continuous Earth system are artificially discretized.
In any complex system, intervariability is di�cult to forecast. However, be-
cause we chose largely relevant features as predictors, we could capture the
macro-level patterns, as evidenced by the macro-level error measures: MAE
and ACC.

6. Conclusions

We demonstrated that random forest regression and the associated Gini
importance measure can provide insight into why ESMs incorrectly estimate
sea ice extent in recent decades. We found a discrepancy in the feature
importance between observed and simulation datasets. In particular, the
discrepancy between E3SM and observation appear to be due to an over-
reliance on June sea ice extent and August sea ice volume. The order of
feature importance was also di↵erent between E3SM and observation, and
the ordering was not consistent within E3SM ensemble members. In all
cases, E3SM over-relies on six features compared to observed data. Machine
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learning allows us to fill the gaps in the underlying physics of ESMs, providing
a metric for Stroeve et al.’s [16] hypothesis that ESMs are missing complex
relations and causal mechanisms.

In the future, we can evaluate more features that can be measured or
constructed in each dataset. An analysis, including all months of the year
in each model will be elucidating as well. Sea ice extent is measured daily
via satellite imagery. We can understand how each dataset explains sea ice
extent at a higher resolution every month of the year.

We can repeat our analysis on other regions, including Antarctica, where
there are also problematic disagreements with observations [8]. An analy-
sis like this of other climate models could be insightful too. It would be
particularly interesting to compare simulations in which there few to no
correlated features. That would allow for variations on the analysis, such
as more modeling approaches, which require linearly independent features,
and more feature analysis methods, such as drop-column importance, which
would otherwise struggle with multicollinearities.

Further insight could be gained by repeating our analysis with a machine
learning method other than RFR, however the following methods have their
own challenges. Most neural network models would need more observed data
than is available to converge. We found that multiple linear regression cannot
learn the data well because the relationships between features are nonlinear.
Reid and Tarantino [18] found that SVR can forecast the data well, but it is
unclear what the best feature analysis method would be.

Given the discoveries in this paper, we can run experiments with E3SM
to determine how reducing feature disagreements between the observed and
simulation datasets impact E3SM’s forecasts. That process may not yield
results for several reasons, including that E3SM’s real feature set is large and
complex, focusing analysis on the Arctic region is too restricting to estimate
the e↵ects of the global Earth model, or our ML models are too limited by
small datasets. Despite these challenges, our results can potentially guide
climate modelers as they develop the next generation of ESMs.

Acknowledgments

This work is supported by Sandia Earth Science Investment Area Labo-
ratory Directed Research and Development funding. Sandia National Lab-
oratories is a multimission laboratory managed and operated by National

15Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
Technology and Engineering Solutions of Sandia, LLC., a wholly owned sub-
sidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA-0003525.

References

[1] J. Stroeve, D. Notz, Changing state of Arctic sea ice across all seasons
(sep 2018). doi:10.1088/1748-9326/aade56.

[2] Arctic report card 2019, Tech. rep. (2019).
URL https://www.arctic.noaa.gov/Report-Card

[3] L. C. Smith, S. R. Stephenson, New trans-Arctic shipping routes navi-
gable by midcentury, PNAS 110 (13) (2013) 4871–4872.

[4] H. Goosse, J. E. Kay, K. C. Armour, A. Bodas-Salcedo, H. Chepfer,
D. Docquier, et al., Quantifying climate feedbacks in polar regions, Na-
ture Communications 9 (1919) (2018).

[5] F. Sevellec, A. V. Fedorov, W. Liu, Arctic sea-ice decline weakens the
atlantic meridional overturning circulation, Nature Climate Change 7
(2017) 604–610.

[6] J. Cohen, K. Pfei↵er, J. A. Francis, Warm Arctic episodes linked with
increased frequency of extreme winter weather in the United States,
Nature Communications 9 (869) (2018).

[7] I. Cvijanovic, B. D. Santer, C. Bonfils, D. D. Lucas, J. C. H. Chiang,
S. Zimmerman, Future loss of Arctic sea-ice cover could drive a substan-
tial decrease in california’s rainfall, Nature Communications 8 (1947)
(2017).

[8] E. Rosenblum, I. Eisenman, Sea ice trends in climate models only ac-
curate in runs with biased global warming, Journal of Climate 30 (16)
(2017) 6265–6278. doi:10.1175/JCLI-D-16-0455.1.

[9] A. G. Meehl, C. Covey, T. Delworth, M. Latif, B. Mcavaney, J. F. B.
Mitchell, et al., THE WCRP CMIP3 Multimodel Dataset: A New Era
in Climate Change Research, American Meteorological Society (Septem-
ber) (2007). doi:https://doi.org/10.1175/BAMS-88-9-1383.

16Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
[10] J. Stroeve, M. M. Holland, W. Meier, T. Scambos, M. Serreze, Arctic sea
ice decline: Faster than forecast, Geophysical Research Letters 34 (9)
(2007). doi:10.1029/2007GL029703.

[11] M. G. A. Taylor Karl E., Stou↵er Ronald J., An Overview of CMIP5
and the Experiment Design, American Meteorological Society 3 (april)
(2012) 485–498. doi:10.1175/BAMS-D-11-00094.1.

[12] E3SM Project, Energy Exascale Earth System Model (E3SM), [Com-
puter Software] https://dx.doi.org/10.11578/E3SM/dc.20180418.

36 (Apr. 2018). doi:10.11578/E3SM/dc.20180418.36.
URL https://dx.doi.org/10.11578/E3SM/dc.20180418.36

[13] V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stou↵er,
et al., Overview of the Coupled Model Intercomparison Project Phase
6 (CMIP6) experimental design and organization, Geoscientific Model
Development 9 (5) (2016) 1937–1958. doi:10.5194/gmd-9-1937-2016.
URL https://www.geosci-model-dev.net/9/1937/2016/

[14] L. Breiman, Random forests, Machine Learning 45 (1) (2001) 5–32. doi:
10.1023/A:1010933404324.
URL http://dx.doi.org/10.1023/A%3A1010933404324

[15] S. Nembrini, I. R. Ko, M. N. Wright, C. Lu, The revival of the Gini im-
portance? 34 (May) (2018) 3711–3718. doi:10.1093/bioinformatics/
bty373.

[16] J. C. Stroeve, V. Kattsov, A. Barrett, M. Serreze, T. Pavlova, M. Hol-
land, et al., Trends in Arctic sea ice extent from CMIP5, CMIP3
and observations, Geophysical Research Letters 39 (16) (2012) 1–7.
doi:10.1029/2012GL052676.

[17] M. Ionita, K. Grosfeld, P. Scholz, R. Tre↵eisen, G. Lohmann, Septem-
ber Arctic Sea Ice minimum prediction - a new skillful statistical ap-
proach, Earth System Dynamics Discussions (2018) 1–23doi:10.5194/
esd-2018-61.
URL https://www.earth-syst-dynam-discuss.net/esd-2018-61/

[18] T. G. Reid, P. M. Tarantino, Arctic sea ice extent forecasting us-
ing support vector regression, in: Proceedings - 2014 13th Interna-
tional Conference on Machine Learning and Applications, ICMLA 2014,

17Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
Institute of Electrical and Electronics Engineers Inc., 2014, pp. 1–6.
doi:10.1109/ICMLA.2014.7.

[19] G. Peng, W. N. Meier, D. J. Scott, M. H. Savoie, N. Snow, A long-
term and reproducible passive microwave sea ice concentration data
record for climate studies and monitoring (2013) 311–318doi:10.5194/
essd-5-311-2013.

[20] A. Schweiger, R. Lindsay, J. Zhang, M. Steele, H. Stern, R. Kwok, Un-
certainty in modeled Arctic sea ice volume, Journal of Geophysical Re-
search: Oceans 116 (9) (2011) 1–21. doi:10.1029/2011JC007084.

[21] NOAA, OAR, ESRL-PSD, Ncep-doe reanalysis 2, nCEP Reanalysis 2
data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA
(2019).
URL https://www.esrl.noaa.gov/psd/

[22] NOAA, OAR, ESRL-PSD, Noaa extended reconstructed sea sur-
face temperature, NOAA ERSST V4 data provided by the
NOAA/OAR/ESRL PSD, Boulder, Colorado, USA (2019).
URL https://www.esrl.noaa.gov/psd/

[23] J.-C. Golaz, P. M. Caldwell, L. P. V. Roekel, M. R. Petersen, Q. Tang,
J. D. Wolfe, et al., The DOE E3SM Coupled Model Version 1 :
Overview and Evaluation at Standard Resolution (2019). doi:10.1029/
2018MS001603.

[24] J. E. Kay, C. Deser, A. Phillips, A. Mai, C. Hannay, G. Strand, et al.,
The community earth system model (cesm) large ensemble project:
A community resource for studying climate change in the presence of
internal climate variability, Bulletin of the American Meteorological
Society 96 (8) (2015) 1333–1349. arXiv:https://doi.org/10.1175/

BAMS-D-13-00255.1, doi:10.1175/BAMS-D-13-00255.1.
URL https://doi.org/10.1175/BAMS-D-13-00255.1

[25] B. J. Zib, X. Dong, B. Xi, A. Kennedy, Evaluation and intercomparison
of cloud fraction and radiative fluxes in recent reanalyses over the arctic
using BSRN surface observations, Journal of Climate 25 (7) (2012) 2291–
2305. doi:10.1175/JCLI-D-11-00147.1.

18Jo
ur

na
l P

re
-p

ro
of



Journal Pre-proof
[26] L. Breiman, Bagging predictors, Machine learning 24 (2) (1996) 123–
140.

[27] R. E. Banfield, L. O. Hall, K. W. Bowyer, W. P. Kegelmeyer, A Com-
parison of Decision Tree Ensemble Creation Techniques 29 (1) (2007)
173–180.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, et al., Scikit-learn: Machine learning in Python, Journal of
Machine Learning Research 12 (2011) 2825–2830.

[29] L. Breiman, Arcing classifiers, Ann. Statist. 26 (3) (1998) 801–849. doi:
10.1214/aos/1024691079.
URL https://doi.org/10.1214/aos/1024691079

[30] S. Van Der Walt, S. C. Colbert, G. Varoquaux, The numpy array: a
structure for e�cient numerical computation, Computing in Science &
Engineering 13 (2) (2011) 22.

[31] M. Waskom, the seaborn development team, mwaskom/seaborn (Sep.
2020). doi:10.5281/zenodo.592845.
URL https://doi.org/10.5281/zenodo.592845

[32] L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification and
Regression Trees, Wadsworth International Group, Belmont, California,
1984.

[33] T. Hengl, M. Nussbaum, M. N. Wright, G. Heuvelink, B. Gräler, Ran-
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