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Abstract
Purpose of Review We review recent research on swarm robot foraging and contextualize it with foundational work. Recent work
can be divided into two complementary camps: self-organizing algorithms that provide practical gains and analytical research
focus on theoretical proofs.
Recent Findings Encouragingly, the convergence between theory and practice is evident in analytical work on the scaling of
transportation networks and in behavioral grammars that give formal insight into emergent properties of foraging. Augmented
reality has enabled virtual pheromones to be used with hardware, blurring the line between physical and simulation experiments.
Summary In this review we highlight bio-inspired and self-organizing approaches to swarm foraging and contrast them with
approaches that can provide theoretical proofs, but which abstract away important features from foraging in real-world
environments.

Keywords Swarm robotics . Swarm intelligence . Bio-inspired foraging . Foraging taxonomies . Central place foraging review

Introduction

Østergaard et al. [1] defined swarm foraging as “a two-step
repetitive process in which (1) robots search a designated re-
gion of space for certain objects, and (2) once found these
objects are brought to a goal region using some form of nav-
igation.”Winfield [2] wrote that the foraging task is a power-
ful benchmark for three reasons: social insects provide a
proof-of-concept, success requires the coordination of several
physical tasks (searching, harvesting, transportation, homing,
and deposition at a collection site), and optimality requires
cooperation between robots.

One of the most cited applications of swarm foraging is the
harvesting of resources on extraterrestrial bodies [2–4].
Efficient resource collection under these remote and harsh
conditions requires the use of autonomous robots.

The fundamental challenge in swarm foraging is the com-
plex and dynamic interaction between robots, the environ-
ment, and targets, given only limited and noisy local informa-
tion. Several divergent lines of research have been developed
to meet this challenge.

This review focuses on research published between 2015
and early 2020. We refer the reader to Senanayake et al. [5],
Bayindir [6], and Zedadra et al. [7] for reviews of work before
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2015. We place recent research in context by discussing foun-
dational papers, those primarily written in the 1980s and early
1990s when the various approaches to swarm foraging were
forming. Foundational papers were selected by tracing refer-
ences in recent work back to the first relevant ancestral publi-
cation (e.g., Baeza-Yates [8]) and frequently cited papers from
that period (e.g., Brooks [9]), or papers that were representa-
tive of a highly cited author or research group (e.g.,
Deneubourg et al. [10]). See Efremov and Kholod [11] and
Talamali et al. [12] for alternative points of view on recent
foraging research.

Foundations

Swarm foraging has been a central robot task since the begin-
ning of modern robotics in the 1990s. Drogoul and Ferber [13]
in their 1993 swarm foraging paper described the “explorer-
robots application” as popular because of its use in “the three
most influential fields of Artificial life”: robotics where it mo-
tivated the subsumption architecture [9], evolutionary pro-
gramming of simulated ants following the “Santa Fe Trail”
[14], and behavioral simulations of social animals [10].

Almost as soon as robot foraging research began, the sym-
bolic artificial-intelligence solutions that had dominated ro-
botics were abandoned. Symbolic AI is a useful strawman
because each of the above strategies is defined by how it
overcomes the intractability of the model–plan–act solution
that symbolic AI offered.

Steeles [3] found the logical planner approach to be wholly
unreasonable because (1) the computational cost would be too
high to reason effectively about the world and (2) creating an
accurate model of the world is very difficult. Steeles’ argu-
ment that an intelligent robot would be infeasible because it
would need megabytes of memory and the ability to perform
thousands of logical inferences per second is anachronistic.
However, recent work on swarm foraging still favors emer-
gence, simple agents, and behaviors over reasoning explicitly
from a constructed model of the environment.

Self-organizing strategies take advantage of emergent and
dynamic interaction with the environment and necessarily
provide empirical performance measures rather than proof.
This branch is in the tradition of Brooks, Steels, and Mataric
[3, 15, 16]. Self-organizing strategies treat the foraging pro-
cess with its feedback cycles, contingency on environments
and target configurations, and lack of global knowledge as a
complex system. Solutions tend to be emergent, stigmergic,
reactive, and based on scientific induction.

Ants have provided a behavioral model for robot foraging
since the earliest publications [3, 13]. Our understanding of
resource collection by animals has been largely shaped by opti-
mal foraging theory [17, 18]. The work of ant researchers such
as Hölldobler and Deneubourg [10, 19] quantified the efficiency

of ant foraging using mathematical models and by observation
of real ants. Winfield [2] highlights the importance of social
insect research “sophisticated foraging observed in social in-
sects, recently becoming well understood, provides both inspi-
ration and system-level models for artificial systems.”

Several papers in this review reference Lévy walks, which
model the movement of biological organisms [20, 21] includ-
ing ants [22] with a power-law distribution of movement
lengths governed by the Lévy exponent. Viswanathan et al.
[23] proved that for sparse, replenishable resources uniformly
distributed in the plane Lévy walks are the optimal stochastic
strategy. Though the underpinnings are analytical, recent pa-
pers have focused on how Lévy walks respond empirically to
violations of those conditions, not on analysis.

In 1983 Baeza-Yates et al. [8] initiated “a new area of study
dealing with the best way to search a possibly unbounded
region for an object.” This work was extended in two further
papers: a single robot searching for a single target [24] and
multiple robots searching for a line [25]. This work formed the
foundation of a branch of robot foraging research that tends to
be highly abstract, interested in formal proofs of performance,
often geometric, and does not include communication [26].
Alternatively, mean-field approaches model the feedback
loops that contribute to the complexity of the foraging task.
They can make strong statements about the statistical distri-
bution of robot states, but they require infinite swarm sizes
and generally assume only local interactions without commu-
nication [27].

Recently, Pitonakova et al. [28–30] proposed a framework
that contextualizes many aspects of foraging in terms of infor-
mation. Robot foragers succeeded or failed based on the
amount and quality of information gathered during foraging
and their ability to act on that information.

Taxonomy

Several taxonomies have been proposed for foraging robot
swarms [1, 2, 31, 32]. Zedadra et al. [7] summarized these tax-
onomies and proposed a synthetic taxonomy: environment,
collective, strategy, and simulation categories and applied them
to simulated systems and real-world experiments. We classify
recent work into self-organizing and analytical categories. Each
category has the following features: optimization methods, robot
differentiation, hybrid control, communication, and
implementation. The classification of papers according to this
taxonomy is in Table 1.

Optimization Method

We classify the optimization methods into three major cate-
gories: machine learning (ML) other than genetic algorithms,
genetic algorithms (GA), and hand tuning. The ML and GA
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methods are used to automatically find the optimal parameters
of the foraging strategy. However, understanding automatical-
ly tuned solutions is challenging. In addition, sometimes ML
optimization requires large computational resources and does
not guarantee convergence to a solution. These drawbacks
motivate many researchers to hand tune their strategies using
heuristics.

Robot and Task Differentiation

Typically, in robot swarms, each robot is identical and works
on the same tasks. However, in some heterogenous swarms,
robots may have different specialized hardware or be respon-
sible for specific tasks (e.g., task partitioning). In recent stud-
ies, most swarms have (1) the same robots for the same task

Table 1 Taxonomy of foraging swarm

Optimization method Differentiation Hybrid control Communication Implementation

Paper Year ML GA HT SS DD SD Y Dt St SM None Sim Lab Field

Self-organizing
[33] 2020 × × × × 100
[34] 2020 × × × 3
[12] 2020 × × × 500 200
[35••] 2020 × × × × 4864
[36] 2020 × × × 20
[37] 2019 × × × × 4 4
[38] 2019 × × × 950
[39] 2019 × × × 50
[40] 2018 × × × × 96
[30] 2018 × × × 50
[41] 2018 × × × 20
[28] 2018 × × × 50
[29] 2018 × × × 5
[42] 2018 × × × 100
[43] 2018 × × × 40
[44] 2018 × × × × 200
[45] 2018 × × × 1
[46] 2018 × × × 1
[47] 2017 × × × × 30
[48] 2017 × × × × 24
[49] 2017 × × × 50
[50] 2016 × × × 64
[51] 2016 × × × 50
[52] 2016 × × × × 10
[53] 2016 × × × 30 30
[54] 2016 × × × × 30
[55] 2015 × × × 768 6
[56] 2015 × × × × 6
[57] 2015 × × × 1000
[58] 2015 × × × 30
[59] 2015 × × × × 20
[60] 2015 × × × 6
[61] 2015 × × × 15
[62] 2015 × × × 20
Analytical
[35••] 2020 × × × × 4864
[63••] 2019 × × 100
[64] 2019 × × × 12
[65] 2019 × × × 16,384
[66] 2018 × × × × 80
[67••] 2020 × × × × 1000
[68] 2018 × × × 9
[69] 2017 × × × 250
[70] 2016 × × × × 30
[71] 2016 × × × 25
[72] 2016 × × × 5 5

The numbers indicate the maximum number of robots used

MLmachine learning,GA genetic algorithm,HT hand tuning, Differentiation: robot and task differentiation (SS same robots for same tasks,DD different
robots for different tasks, SD same robots for different tasks), Dt direct, St stigmergy, SM shared memory, Sim simulation, Lab physical robots in
laboratory environments, Field physical robots in real-world environments.
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(SS) [52, 66], (2) different robots for different tasks (DD) [35,
40], or (3) the same robots for different tasks (SD) [54, 59, 73].

Hybrid Control

While all swarm foraging systems are inherently distributed,
many approaches use some centralized global knowledge, for
example, preplanned transportation routes [54, 59]. We call
these hybrid control strategies.

Communication

Three major forms of communication appear in recent re-
search: direct communication, stigmergy, and sharedmemory.

Direct Communication: Robots exchange information di-
rectly between each other.

Stigmergy: Stigmergy is communication through modifi-
cation of the environment, exemplified by ant pheromones.
In simulation studies changing the simulation environment is
trivial. In physical instantiations stigmergy is difficult to
achieve.

Three major approaches have been used to emulate ant
pheromones: beacon robots [74–76], physical materials
[77–79], and virtual pheromone [42, 49, 60, 61, 80]. Virtual
pheromones may be implemented with augmented reality:
Kilobots are capable of light stigmergy [12, 49] as are epucks
[61]. Arvin et al. [60] implemented a series of low-cost robots
capable of following light pheromones. Steels [3] proposed
the use of radioactive materials to create physical trails and
Alfeo et al. [39] suggested RFID tags.

Shared Memory: Robots can access and add information
to a common memory. This mechanism is analogous to the
broadcast communication in which each robot can exchange
information with any other robots in the swarm.

Implementation

Foraging research used a variety of simulation and physical
realizations of robots and their environments. These robots
can be broadly divided into simulation, physical robots con-
fined to laboratory environments, and field robots. We discuss
commonly used robot platforms in the next section.

Robotic Platforms

Several hardware and simulation technologies have been de-
veloped, which underpin recent swarm foraging research.

Simulation: Many recent foraging robot experiments have
been conducted using the Autonomous Robots Go Swarming
(ARGoS) [81] and Gazebo simulators [82]. ARGoS is a
swarm robot simulation environment that uses physics en-
gines of varying fidelity to model various robots quickly.

Gazebo is a more accurate simulation but as a result cannot
simulate large swarms. STAGE [72, 83–85], the Microsoft®
Robotics Developer Studio (MRDS) [86], and the agent-based
modeling Netlogo [87] have also been used in recent work.

Laboratory: Many studies simulated simple physical pick-
up and drop-off of objects. For example, Castello et al. [72],
Brutschy et al. [62], Pitonakova et al. [29] and Mondada et al.
[88] use a group of e-puck robots; and Hecker and Moses [55]
use iAnt robots, which detect targets but do not physically
pick them up [89, 90]. Kilobots can operate autonomously
to push items, but they have relatively limited mobility and
only operate in controlled laboratory environments [91, 92].
Many physical foraging experiments have been conducted
with foot-bots equipped with grippers, infrared sensors, and
camera for omnidirectional vision [73] and customizable plat-
forms like MinDART [93]. The Robotarium provides a
testbed for remotely accessible physical robots, and localiza-
tion is governed by an overhead camera [94].

Field: Many physical foraging experiments have been con-
ducted in real-world environments. The Swarmanoid project
demonstrates an innovative heterogeneous physical swarm
robotic system in solving a complex object retrieval task in
an environment containing a shelf and books [95]. The
Cataglyphis robot, which won the NASA Sample Return
Robot (SRR) Challenge, demonstrated robust robotic foraging
in an outdoor environment.

One hundred Swarmie robots were used in the NASA
Swarmathon competition. Swarmies were designed to operate
outside of the lab in “parking lot” environments. They have a
front web camera, three pairs of ultrasound range sensors,
inertial measurement unit (IMU), GPS, wheels, onboard
Linux computer, and a front gripper for collecting and
transporting targets [4].

Self-Organizing Strategies

Hecker and Moses [55] developed the iAnt robot testbed and
implemented a correlated random walk and pheromone forag-
ing solution called the Central-Place Foraging Algorithm
(CPFA). The system was optimized offline by a GA for differ-
ent environments. Using ARGoS, Just et al. [48] built on the
work in Hecker andMoses [55] to develop an online method of
selecting the appropriate foraging parameters. Performance was
compared with the Distributed Deterministic Spiral Algorithm
(DDSA) [70] analytical approach and found to outperform it
for dynamic distributions in which resource locations change
over time but not for static resource locations.

Ericksen et al. [47] implemented a foraging algorithm using a
neural network controller designed by Neuroevolution of
Augmenting Topologies [96] named NeatFA and compared it
against the CPFA in [55] and the DDSA [70]. Empirically,
NeatFA can successfully forage for resources with comparable
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performance without human-designed behavioral states and
transitions.

The Swarmathon competition [4, 34, 97] was funded by
NASA to develop foraging algorithms and evaluate them
using Swarmie robots. In Fig. 1 robots use a spoke algorithm
to gather target cubes and deposit them in a central location.
Successful entries optimized their strategies empirically over
many development trials. Solutions included geometric pat-
terns such as expanding spirals, rotating spokes [63••], and
zig-zags. Recruitment to target cluster locations was success-
fully employed in combination with these geometric patterns.

Wilson et al. [41] demonstrated online adaptation with a
hormone inspired approach. Using ARGoS, emergent online
adaptation was shown to do better than offline GA
optimization.

Alfeo et al. [39] framed the problem of gathering refuse in a
complex urban environment as a multiple-place foraging task.
The authors used the structure provided by the environment
along with stigmergy to develop a self-organizing solution
that performs better than a preplanned strategy. Experiments
were performed with the agent based urban planning tool
Gama.

Using the iAnt simulation, Fricke et al. [98] motivated by
the suggestion that T cells employ a Lévy search pattern [21],
showed that the optimal Lévy exponent depends on both the
degrees to which targets are clustered and on the size of the
swarm. Nauta et al. [99] combined memory with Lévy walks.
This improved performance in single objective foraging but
reduced multi-objective efficiency. Memory also made the
search pattern appear Brownian. Schroeder et al. [100] pro-
posed a combination of pheromone following and Lévy
walks. The combination was empirically demonstrated to be

more efficient, but “pop up” threats were more often avoided
by Lévy walks alone. Dimidov et al. [53] investigated the
parameterization of Lévy walks and correlated random walks
(CRW). Using a customized simulation and Kilobots, the au-
thors found that in bounded-foraging areas high-displacement
CRWs outperform a Lévy walk, but the reverse was true for
unbounded foraging areas.

Congestion is a negative feedback loop in foraging. To
mitigate this, Isaacs et al. [34] implemented a reservation sys-
tem, while Abdelaal et al. [69] used bias in pheromone fol-
lowing so that robots avoided each other on the way to the
collection zone. Isaacs et al. performed experiments with a
Gazebo [82] simulation developed for the Swarmathon [4].
Talimali et al. [12] and in follow up work Llenas et al. [44]
used ARK [49] and ARGoS in a study informed by optimal
foraging theory to show that congestion as a product of swarm
size determines when swarms benefit from switching to alter-
nate, lower quality, target clusters.

Zedadra et al. [57] implemented a pheromone strategy to
avoid oversampling of the environment. Their system
consisted of a subsumption architecture with 4 layers: explo-
ration, target exploitation, recharging, and obstacle avoidance.
Dadgar et al. [71] presented adaptive robot particle swarm
optimization (A-RPSO), which they show improves upon pre-
vious PSO algorithms when applied to foraging.

Ferrante et al. [59] used a GA to evolve a foraging solution
using a behavior grammar. The system evolved efficient for-
aging strategies with relatively little constraint on available
behaviors. The authors emphasized the implications for evo-
lutionary biology as well as swarm robotics. Experiments
were performed using an ARGoS simulation of foot-bots.

Andrade and Boyle [33] investigated an energy constrained
model of foraging in which robots use the energy from for-
aged resources to continue foraging. Evolutionary algorithms
were used to tune a 6-parameter model over several environ-
ments. The authors reported that “reactive algorithms are ideal
for minimalistic, low-cost or disposable robots as they do not
demand complex or expensive hardware resources.”

Analytical Strategies

Baeza-Yates et al. [24] proved that a spiral search pattern is
optimal for guaranteed detection of a single target by a single
searcher. Fricke et al. [70] built on that work to describe the
DDSA which generates an interlocking pattern of spirals suit-
able for a robot swarm. The pattern was compared with a
perfect foraging algorithm mathematically and to an ant-
inspired self-organizing central place foraging algorithm
(CPFA) in Hecker and Moses [55] in ARGoS. Pelc [101]
considered an agent searching for a target using a square spiral
strategy on a plane and proved that the time to find a target is

Fig. 1 Swarmie robot foraging. Teams of 6 robots utilized a spoke
algorithm developed by the Southwest Indian Polytechnic Institute as
part of the NASA Swarmathon III Competition at John F. Kennedy
Space Center [4]. The arena is 20 × 20 m and contains several
obstacles, one of which is visible at the top of the picture. Robot 21 on
the right is carrying a target cube to the collection zone (white square).
Previously foraged cubes are piled on the collection zone. (Credit: Beatriz
Palacios, 2018)
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searcher and targets and r is the detection radius.
Aggarwal et al. [102] provided formal bounds on efficien-

cy for three geometric CPFAs: (1) a distributed spiral algo-
rithm [70], (2) a spoke algorithm [4], and (3) a random ballis-
tic algorithm [103] when compared with an ideal foraging
algorithm [70]. The spiral algorithm was proven to have an
upper bound on performance closest to the ideal algorithm.

Lu et al. [35] described a hierarchical transportation network
for swarm central place foraging. The formal analysis proved
the scaling relationship of collection rate vs the number of robots
for several variations on the strategy. The mathematical frame-
work of biological scaling theory was leveraged in the proofs.

Mayya et al. [64] developed a model in which robots de-
cided whether to continue an assigned task or leave the area
based on local congestion. This strategy optimized the balance
between allocating many robots to a task and overcrowding.
The theoretical findings were tested in real robots [94]. This
work employed a mean-field approach to the analysis of
swarm foraging.

Ericksen et al. [104] developed algorithms for discovery
and sampling of volcano plumes using UAV swarms. The
authors presented the LOCUS algorithm and proved its resil-
ience to UAV loss and verified theoretical predictions using
the ARGoS simulator. Aggarwal and Saia [105] analyzed the
Golden Foraging Algorithm (GoldenFA), which is reminis-
cent of a spoke algorithm [63••] entered into the
Swarmathon competition [4], but the angle between spokes
is taken from the golden ratio. The authors formally proved
that the GoldenFA was fault tolerant.

In a series of papers Harwell and Gini presented a model
for task allocation in swarm foraging [65–67]. Robots could
choose dynamically based on local information whether to
divide the foraging task into subtasks. Task allocation is
governed by a graph structure. This network approach
allowed the authors to develop formal proofs informed by
simulation experiments about emergent behaviors.
Specifically, the contributions of network structure to emer-
gent behavior. Harwell and Gini have been closing the gap
between analytical and self-organizing research.

Field Studies

Robot foraging is useful in smart farming. These applications
range from crop monitoring [106, 107] fruit and vegetable
harvesting [108–110] to exotic applications like robotic polli-
nation [111]. Several studies developed viable solutions to
collection problems in real-world environments. Due to the
difficulty of integrating multiple requirements into a coherent
robotic system, successful real-world demonstrations of for-
aging robots are still rare.

Albani et al. applied foraging techniques to agriculture in
[112, 113] to produce a weed infestation map by using a
swarm of Avular Curiosity UAVs with downward facing
cameras. Building this map under strict flight time constraints
of the small UAVs required a trade-off between exploration
and exploitation to identify the location and density of weed
clusters without exhaustive search. This approach used ran-
domized search to identify possible clusters and virtual bea-
cons to attract multiple robots to explore a location once a
cluster is found.

Gu et al. [45, 46] described the Cataglyphis robot, which
the authors entered the NASA Sample Return Robot (SRR)
Challenge. This entry was the only robot to complete the real-
world stage in 5 years and out of more than 50 entries. To
succeed, the team leveraged a wide variety of technologies
and techniques including 17 unique behaviors including haz-
ard avoidance, image segmentation and classification, and a
sophisticated robot. The team’s success highlighted how dif-
ficult it is to perform robot foraging in the field.

Lu et al. [37] showed how implementing an algorithm in a
physical robot can change the relative performance of algo-
rithms in simulation. They compared the CPFA [55] and the
DDSA [70] using Swarmie robots. The experiments were per-
formed in a “parking lot” environment outside with obstacles.
In simulations the DDSAwas shown to outperform the CPFA,
but in physical robots this did not hold true. Furthermore, in
the presence of obstacles and targets, the pattern of movement
produced by the DDSA became indistinguishable from that of
the CPFA. This was further evidence that bridging the reality
gap [114] is very challenging.

Scalability

An effective foraging strategy should work in swarms ranging
from tens to thousands of robots without reducing per robot
foraging performance. This property is often called scalability
[8–11]. Many complex systems confront the challenge of de-
signing scale-invariant robot swarms. Harwell and Gini pro-
posed a set of quantitative metrics for the scalability of simu-
lated swarms over 10,000 robots as a design tool by solving a
large object gathering problem [65]. Rausch et al. [38] inves-
tigated scale-free properties of artificial collective systems
using simulated robot swarms. Many studies focused on mit-
igating the negative feedback-loop in foraging robot swarms
caused by congestion [51, 69, 115]. Even without including
collisions in simulations, Hecker and Moses [55] observed
sub-linear foraging performance as more robots were added
in a foraging task simulation. Rosenfeld et al. [49] also ob-
served sub-linear performance increases for one of their sim-
ulation sets that simply allowed robots to pass through one
another without colliding [116].
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Two problems affect scalability. First, large swarms with
many robots produce more inter-robot collisions, which result
in diminishing returns [117]. Second, large foraging arenas
require robots to travel further distances to find targets and
transport them to the central collection point since over time
target become rarer, and per target collection time increases
exponentially [56].

Lu et al. [40] focused on improving the scalability of bio-
inspired foraging robot swarms using a multiple-place forag-
ing algorithm (MPFA). The foraging behavior is optimized by
a GA in ARGoS. The experimental results indicated that the
foraging performance increased with the number of collection
zone since (1) collisions were distributed to multiple collec-
tion zones and (2) robots do not have to transport targets as far.

However, the foraging performance per robot of theMPFA
still decreases when the swarm size is very large. Ideally,
foraging performance per robot would be linear in swarm size.
Lu et al. [35••] presented a bio-inspired hierarchical transpor-
tation network inspired by the mammalian cardiovascular net-
work. Biological scaling theory predicts how quickly robots
forage for unlimited swarm sizes and foraging areas.
Experiments were performed with ARGoS using thousands
of robots searching over thousands of square meters. The ex-
perimental results showed that the transportation network pro-
duces scale-invariant robot swarms.

Font Llenas et al. [44] successfully implemented a foraging
robot swarm composed of up to 100 Kilobots. With the ARK
system [49], Kilobots can deploy and sense virtual phero-
mones in physical environments. Talamali et al. [12] is the
largest physical robot experiment in stigmergic foraging, with
swarms of 200 physical robots. The results demonstrated an
efficient and robust collective foraging process in a large
physical robot swarm.

Conclusions

Central place foraging remains a grand-challenge problem in
swarm robotics. It requires solving several important subtasks:
search, harvesting, transportation, navigation, and localization
[2], and to be effective, cooperation between robots [118]. We
outlined recent approaches to foraging and highlighted two
complementary strategies: self-organization and formal anal-
ysis. Self-organized, bioinspired approaches continue to dom-
inate swarm foraging research, especially for more practical,
though still aspirational, applications such as refuse collection
[39], and resource collection [4]. Recent analytical approaches
have provided theoretical bounds on efficiency [35, 63], fault
tolerance [104, 105], and even the conditions required for
emergent behavior [67••].

Increasingly, researchers have been able to reason analyti-
cally about swarm foraging while bridging the gap between
proof and practice. Conversely, analytical solutions have been

tested in a practical setting [37]. Despite these advances,
linking these two concepts together remains a challenge as is
evident from recent fieldwork [45, 112].

Optimization of self-organizing strategies with machine
learning techniques such as neural networks and especially
evolutionary algorithms are commonly observed in the papers
from the past 5 years. This is not an entirely new phenomenon
with genetic programming having been used by Koza [14] in
the 1990s to optimize trail following in simulations of ant-
inspired robots, but it does seem to be increasingly common.
It is still the case that machine learning optimization of forag-
ing remains confined to simulation.

Swarm foraging hardware has been making incremental
improvements. Some platforms such as the Kilobots and
Robotarium provide a middle ground between simulation
and practical robots, especially with the increasing use of the
ARK system. The Swarmie robot, which is designed to oper-
ate outdoors, while still being limited to parking lots, is a step
towards ground swarms that can operate in outside the
laboratory.

Taken together, recent work has advanced swarm foraging
on several fronts, from theoretical inroads to practical robots
and has reduced the gap between them.
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