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Abstract— Organisms that can more effectively exploit 
information about their environments to improve foraging 
success have a competitive and selective advantage over others. 
Thus, animals are expected to evolve strategies that use 
information to improve foraging success. We study how desert 
seed harvesters use information to improve the rate they collect 
seeds, which contributes to the colony’s fitness. Through field 
studies and computer simulations, we manipulated the 
information available to the ants in the spatial distribution of 
seeds and measured the resulting foraging rates. In field 
observations, seeds were collected faster when seeds could be 
found with less information. The increase in foraging rate with 
clustering was indistinguishable across three related species that 
vary over an order of magnitude in colony size. Computer 
simulations show similar systematic increases in foraging rates 
when information about the food location is communicated 
among nestmates. 
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I.  INTRODUCTION 
According to optimal foraging theory, animals evolve 

behaviors that maximize energy gain and minimize foraging 
costs given the distribution of food in their environment [1, 2]. 
Group foraging can improve the efficiency of finding and 
exploiting food that is patchily distributed, densely 
concentrated, or difficult to acquire [3, 4].  Our goal is to 
quantify how much ant colonies improve foraging efficiency 
by communicating information to recruit nestmates to high-
quality patches where search times are reduced. 

  Ants are a model system for studying how information 
exchange improves foraging [5, 6].   They are diverse, 
abundant, cosmopolitan, and easily observable and 
manipulated in the lab and field. They practice a range of 
foraging behaviors, from individual food gathering to mass 
recruitment of nestmates [5]. As eusocial animals, ants have a 
fitness incentive to maximize food intake for the colony. 
Communicating the location or quality of food can direct 
nestmates to resource-rich areas, reducing time and energy 
spent searching and helping a colony out-compete neighbors 
for rich food sources [7-10]. However, it is not clear to what 
extent the exchange of information among individuals, for 
example via pheromone trails [11-13], improves an entire 
colony’s foraging success.  

Ant recruitment behavior is of particular interest to 
computer scientists and artificial life researchers because it 
serves as the foundation for distributed problem-solving 

systems like Ant Colony Optimization [14-16]. However, 
biologically inspired computation has not yet reached its full 
potential [17], as biocomputing techniques are based on only a 
small sample of natural behaviors, the diversity of which is still 
largely unexplored. Here we examine how variation in food 
distribution affects foraging in real and simulated ant colonies 
in different environments. 

We investigated how the entropy of food distribution 
affects foraging rates in field studies and models of three 
sympatric species of Pogonomyrmex seed harvester ants. These 
well-studied central-place foragers can forage individually or 
use recruitment [4, 18-22].  There is a temporal and spatial 
heterogeneity in the distribution of seeds that make up the bulk 
of these ants’ diet [23], which affects the costs and benefits of 
the solitary versus social foraging [4, 19]. For Pogonomyrmex, 
time costs dominate over energetic costs in foraging. Therefore, 
maximizing seed collection rates maximizes net energetic 
intake [24], an important contributor to colony fitness.  

In field experiments, we placed dyed bait seeds in a spatial 
distribution around each ant nest, varying from a random 
scattering of seeds, to seeds placed in 16 piles, 4 piles, or a 
single large pile. The seeds concentrated in a single pile formed 
the distribution with the lowest entropy. An ant that found the 
single large pile thus gained information about the location of 
the largest number of seeds, and the ants could exploit that 
information to improve foraging. We calculated a foraging rate 
for each distribution by monitoring the seeds of each color as 
they were brought into the nest. Thus, we could measure how 
discovering piles that conveyed different amounts of 
information about seed locations, affected the rate that seeds 
were collected from each distribution. This allowed us to test 
our primary hypothesis, that foraging rates increase 
systematically as seeds are concentrated into larger piles. 

Colony size could also influence how information affects 
foraging success. Many colony characteristics change 
systematically with size [5, 13, 25, 26]. Chemical 
communication should increase with colony size, reflecting the 
increasingly complex web of information in which an 
individual ant is embedded. Indeed, mass recruitment is more 
common in species with larger colonies [5, 27]. Our 
experiments and models were conducted on colonies whose 
forager population sizes at maturity range from fewer than 100 
for P. desertorum to hundreds in P. maricopa to over 1000 in 
P. rugosus [28].  
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We refer to the forager population as colony size, although 
a colony may have many workers that do not forage. Forager 
population is the component of colony size that is relevant to 
questions about information sharing as food is collected. Our 
experimental design controlled for two effects of colony size: 
larger colonies with more foragers have larger territories; and 
larger colonies collect seeds at greater absolute rates. After 
controlling for these factors, we were able to test a second 
hypothesis, that the relative foraging rate for clumped seeds vs. 
dispersed seeds would increase with colony size, as a result of 
larger colonies’ greater ability to share information.  

Previous research has shown that the distribution of food 
[29] and the difficulty of finding food [30] affect the evolution 
and utility of communication. In [30], simulated hive-based 
foraging agents benefitted from memory and communication 
when food was sparse or clustered but not when it was 
distributed at random. In [17], communication evolved for ant-
like agents only when food was difficult to find. Together, 
these studies suggest that randomly distributed or easily 
discovered food do not justify the use of communication, but 
for clustered foods, communication may provide substantial 
benefits. We also explore the hypothesis that the benefit of 
communication is dependent on the distribution of food. We do 
this for real and simulated ants, and we describe the 
distribution of food in terms of the information required to 
specify the locations of food piles.  

We were interested in understanding how specific foraging 
behaviors generate different foraging patterns for seeds 
clustered in different pile sizes. Our goal was to quantify the 
benefit conferred to the colony, in terms of improved foraging 
rates, of communicating the information of the location of these 
piles to other nestmates. We used Shannon information theory 
to quantify information and an Agent Based Model (ABM) to 
simulate foraging with pheromone recruitment. We then 
compared model results to field data to assess the plausibility 
that pheromone recruitment explains the relationships we 
observed between seed distribution and foraging rates.  

We replicated our field studies in simulated observations 
with our computer models. The field studies showed us how 
ants respond to particular food distributions in nature. The 
model allowed us to quantify how different behaviors of 
individual ants affect foraging rates of colonies under perfectly 
controlled conditions. The strong integration of models and 
field studies leads to insights that neither could achieve in 
isolation.  

This study addresses two questions. First, do foraging rates 
increase as seeds are concentrated in fewer larger piles? 
Second, what is the effect of colony size on foraging rates of 
clumped seeds relative to dispersed seeds. 

This paper is organized as follows: the next section 
describes the methods used in our field experiments and in our 
model. Section III describes and compares the results of field 
and model experiments. We discuss the results in section IV 
and finally, conclusions are presented in Section V. 

II. METHODS 
A. Field Study 

We conducted manipulative field experiments on three 
sympatric species of Pogonomyrmex seed-harvesters in the 
summers of 2008 and 2009 in a mid-succession lot in 
Albuquerque, New Mexico. 

We began observations each morning to coincide with the 
start of daily foraging activity. We selected an active colony 
and baited it with dyed seeds arranged in a doughnut-shaped 
ring around the colony entrance (Fig. 1). We placed seeds in 
four distributions equal in number but varying in the degree of 
heterogeneity as follows:  one pile of red seeds; four piles of 
purple seeds; sixteen piles of green seeds; and a random 
scattering of blue seeds.  The four distributions were laid out 
simultaneously. Observers at the nest entrance used the colors 
to identify the distribution of the pile from which a seed was 
collected. We tested for any bias in the rates of collection of 
different seed colors and we found no significant differences 
(Kruskal-Wallis test: n=802 seeds; p=0.59). 

We conducted 38 experiments, 11 of which were excluded 
because the focal colony failed to find at least two seeds from 
at least one distribution during the observation period. This left 
us with nine observations with sufficient data from each 
species.  

These three species vary by over an order of magnitude in 
colony size [31]. In a prior study [28], we estimated forager 
population (mean ± standard error) of 77±196 for 
P.sdesertorum, 208±190 for P. maricopa, and 1712±174 
P.srugosus. Because foragers from small colonies do not travel 
as far as foragers from large colonies, we adjusted the distances 
of baits from the nest entrance to be roughly proportional to the 
square root of forager number per species to approximate the 
average distance a forager travels. Thus, seeds were distributed 
in a ring ranging from five to seven meters from each 
P.srugosus nest, two to four meters from each P. maricopa 
nest, and one to three meters from each P. desertorum nest.  
Since the seeds were closer to the smaller colonies, we required 

 
 
 

 

Figure 1. Experimental seed distribution around the nest entrance of a 
P.srugosus colony. Each colored circle is a pile of seeds, dyed to that 
color. The size of each circle represents the relative number of seeds in 
that pile; 1 pile of 256 seeds, 4 piles of 64 seeds, 16 piles of 16 seeds 
and 256 piles of 1 seed. 



fewer seeds in order to maintain the same density of piles in the 
treatment area. Thus, we used 1024 seeds (256 of each color) 
for P.srugosus, and 128 seeds (32 of each color) for 
P.smaricopa and for P. desertorum. Regardless of the pile size, 
we distributed the seeds in every pile evenly over a 10x10 cm2 
area. 

 After placing the baits, an observer recorded on a laptop 
the color of each seed brought into the nest with a time stamp 
using a Java computer program we created. For every 
observation we generated a set of cumulative seed collection 
curves, one for each distribution (one experiment is shown in 
Fig. 3a.) We concluded observations when the colony ceased 
foraging or when the experimental baits had been collected, 
usually between 60 to 90 minutes after the start time of the 
experiment. 

B. Foraging Model 
We developed an Agent Based Model (ABM) that 

simulates foraging using recruitment. We simulated our 
experimental field studies with ants foraging on seeds in one, 
four, and sixteen clumped piles and a random distribution of 
seeds. Colonies with 100, 250, and 1000 ants were simulated to 
approximate the number of foragers in each of the three species 
in the field study. The numbers of seeds and bait distances were 
adjusted to be proportional to those used in the field. 
Simulations were repeated 9 times each to replicate the sample 
size in the field study, and foraging rates were compared with 
those from the field.  

For each model run, ants set out from the nest and walk in a 
random direction.  While walking, ants have a small probability 
at each time step of slowing down to 1/4 their walking speed 
[32] and beginning to search. Searching ants move in a 
correlated random walk [32].  At each time step a searching ant 
draws from a normal distribution that determines the degree of 
deviation from the direction it moved in the previous time step.  
It then selects the neighboring grid cell that best satisfies that 
direction and moves to that cell.  Searching ants that find 
themselves in a cell containing food pick it up and return to the 
nest (whose location is stored in memory). Ants treat all 
simulated food identically, without regard to source 
distribution. 

Upon picking up food, an ant decides whether to leave a 
pheromone trail on the return trip to the nest.  This decision is 
based on the number of other seeds in neighboring grid cells 
(as actual ants might use smell or briefly handle seeds nearby 
to gauge their density [33]).  An ant laying a pheromone trail 
deposits an amount of pheromone on each cell it walks over 
during its trip back to the nest.  This pheromone evaporates 
from the grid over time. 

Returning ants move preferentially to grid cells that reduce 
their distance to the nest.  Upon arrival at the nest, the ant drops 
the food; time and seed color (representing the source 
distribution) are recorded and the ant begins another foraging 
trip. Ants coming back out from the nest after successful 
foraging trips follow trails by moving preferentially to cells 
with the greatest amount of pheromone.  At each time step, ants 
have a small probability of abandoning the trail to begin 

searching; otherwise they begin searching when they reach the 
end of the pheromone trail. Fig. 2 shows one run of the model.  

The ABM requires estimating eight parameters that are not 
known from field studies. We used genetic algorithms (GA), an 
optimization technique that simulates the process of evolution 
by natural selection [34], to find combinations of parameters 
that produced recruitment behavior that maximized seed intake 
for colonies of different sizes, given a mixture of 
homogeneously and heterogeneously distributed seeds. These 8 
parameters control 5 behaviors (Table 1): degree of turning 
during the correlated random walk of a searching ant; ants' 
tendency to lay pheromone trails on the return trip to the nest; 
probability of laying a trail as a function of seed density; 
evaporation rate of the pheromone trails; and probability that 
ants abandon pheromone trails.  

Our GA works as follows. Each parameter is a floating-
point number. Parameters for each colony in the initial 
generation of each GA run were randomly selected from a 
uniform distribution. Each colony's genome is made up of one 
number for each parameter. The behavior of workers in our 
models is determined by a single set of parameters for the 
colony as a whole. Each GA run used a population of 100 
colonies, over 100 generations. We ran GAs over a range of 
forager numbers, from 10 to 1000 foragers and over a range of 
food heterogeneity. We manipulated food heterogeneity by 
placing food in piles of 256 seeds, and scattering the remaining 
seeds at random over the grid. The grid was always set up with 
the same number of total seeds, but the percent of seeds in piles 
ranged from zero (heterogeneity 0) to 100 (heterogeneity 1). 
We ran the GA multiple times for each combination of forager 
number and food heterogeneity. All colonies were evaluated on 
eight food configurations per generation, with piles and seeds 
placed at random on the grid, but each with the particular 
degree of heterogeneity for that GA run. The eight food 
configurations were the same within each generation but varied 
between generations. Each colony was evaluated on each food 
configuration for 20,000 time steps per configuration. Fitness 
was measured as the total number of seeds collected by each 

This work was supported by DARPA grant P-1070-113237, NIH grant P20 
RR-018754, NSF EF grant 1038682 and a gift from Microsoft Research to 
TPF and MEM; from Sandia National Laboratories LRD 09-1292 to KL and 
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Figure 2. Foraging model running a simulated foraging observation on an 
identical bait distribution as in field observations. Pheromone trails radiate 
from the centrally located nest, overlaid on top of baits, as they appear. For 
sake of clarity, ants are not displayed2 

 



colony in the eight food configurations in each generation. The 
GA used tournament selection, with recombination rates of 
10% and mutation with probability 0.05. The model is 
described in detail in Letendre and Moses, 2010 [35]. 

C. Defining Information 
In order to relate foraging success to the distribution of 

seeds, we defined a single metric to describe each seed 
distribution that accounted for both the numbers of seeds per 
pile and the number of piles. We use Shannon Information 
Theory [36] to quantify the amount of entropy in each 
experimental seed distribution.  

Entropy (H) is defined, in bits, as 

where pi is the probability of a seed being in the ith pile. In 
all of our experimental seed distributions, the total number of 
seeds was constant for a given species (e.g. 256 seeds for 
P.srugosus) and always distributed evenly among the specified 
number of piles, which simplifies calculating the entropy. For 
example, if seeds are distributed evenly in 4 piles, then 

€ 

H = 4 − 1
4( )log2 1

4( ) = 2 bits. If seeds are evenly distributed in 16 
piles, then 4 bits are needed to specify all 16 locations.  

When an ant discovers a pile of seeds with a lower entropy 
distribution, it gives the ant information about a larger number 
of seeds. Every time the number of piles doubles, another bit is 
needed to specify the entropy of the distribution such that 1, 2, 

or 4 bits are needed to specify the locations of 1, 4 and 16 piles, 
respectively.  

There are different ways that we could define information 
in this system. Following [37], we measure information as 
reduction in uncertainty. More specifically, we define 
information gained when a seed is found as the reduction in 
uncertainty about the location of all seeds in that distribution. 
For example, when a blue seed (from the random distribution) 
is found it provides information about the location of only that 
seed. When a P. rugosus forager finds the 1 red pile containing 
256 seeds, it gains information about the location of all 256 
seeds of that distribution. 

In the context of our field study, we used a random 
distribution (256 piles of 1 seed for P. rugosus and 128 piles of 
1 seed for P. maricopa and P. desertorum) as a “null” 
distribution. We compared the rates of collection of all other 
distributions, as a ratio, to that of the “null” distribution of each 
observation.  So, we compare the information (on a log2 scale) 
to a relative foraging metric (also on a log2 scale) (see below). 
The information measure is advantageous because it allows a 
single number to characterize the distributions. 

D. Data Analysis 
We produced four time series from each experimental 

observation, one from the collection of seeds from each 
experimental seed distribution. Our goal was to measure how 
much faster each clumped distribution was collected compared 
to the random distribution.  

We calculated two foraging metrics for each distribution. A 
seed rate was calculated by dividing the number of seeds 
collected from a distribution by the total collection time (the 
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TABLE 1. : SUMMARY OF PARAMETERS THAT INFLUENCE THE BEHAVIOR OF THE MODELS, AND WHICH ARE SELECTED BY GAS 

 

 
Parameter Function 

! At model initialization, determines the probability each time step that an ant walking from the nest will stop walking and 
begin to search.  For lower values, ants tend to walk farther from nest before beginning to search. 

" For searching ants moving in a correlated random walk, determines the baseline degree of deviation in the direction an 
ant will move from one time step to the next.  For low values, ants turn less, move in a straighter line, and cover more 
distance; for high values, ants movements are more random, they turn more, search more thoroughly in a local area, but 
cover less distance. 

# For searching ants, determines the additional degree of deviation in turning early on in an ant's search, allows for more 
thorough, local searching at the end of a pheromone trail. 

$ For searching ants, this exponent term determines how quickly turning behavior approaches the baseline turning 
behavior determined by " as time spent searching increases. 

% For ants following a pheromone trail, determines the probability each time step that an ant will abandon the trail and 
begin searching before reaching its end.  For lower values, ants tend to follow pheromone trails greater distances, and or 
more likely to follow trails to their end, where food was previously discovered. 

& Determines the rate at which pheromones evaporate.  Higher values produce faster exponential decay of the pheromones 
from the grid. 

' Determines the baseline probability that ants will leave a pheromone trail each time they pick up a piece of food.  For 
values greater than or equal to one, ants leave pheromone trails each time they pick up food.  Lower values correspond to 
decreased probability.  For values below zero, the presence of other nearby food is required for ants to leave a 
pheromone trail.  Density-dependent recruitment model only. 

µ Determines ants' sensitivity to the presence of other food when making a decision to leave a pheromone trail or not.  
With higher values, the presence of each additional piece of food in the neighborhood increases the probability of 
leaving a pheromone trail less.  Density-dependent recruitment model only. 

 



time between collection of the first and last seed of that color). 
A foraging ratio was calculated by dividing the seed rate for a 
distribution by the seed rate for random (blue) seeds.  These 
three ratios, one each for red, purple, and green seeds, provided 
a normalized metric of how much faster clumped seeds are 
collected compared to randomly distributed (blue) seeds. The 
foraging ratios allowed us to make meaningful comparisons 
across variable colony sizes and activity levels, and to compare 
results from the field to those from the model, which are 
measured on different time scales (model time steps are not 
calibrated to seconds but time drops out in the calculation of 
foraging ratios). In order to correct for skew in our field data, 
we log2-transformed the ratios to obtain normally distributed 
foraging ratios. We conducted our analysis on these log2-
transformed foraging ratios. 

We analyzed seed rates and log2-transformed foraging 
ratios using a General Linear Model with repeated measures 
analysis (SPSS). Repeated measures analysis accounts for the 
non-independence of multiple measures taken of a single focal 
colony, and it provides greater statistical power by allowing us 
to distinguish within- and between-subjects effects.  In addition 
to the within-subject effect of seed distribution, we include 
species identity (as a proxy for colony size for field data) and 
forager population size (for model data) as a between-subject 
factor in these analyses. We use estimated marginal means in 
our analysis to account for different sample numbers and the 
influence of the independent variables (colony size and seed 
distribution) on our dependent variable (foraging ratio). All 
means presented in figures are estimated marginal means. 

III. RESULTS 
Fig. 3 shows cumulative seed collection over time for one 

field observation of P. rugosus and for one simulation of a 
colony with 1000 foragers. The field data depict an accelerated 
seed collection rate for the more clumped seeds (red) after an 
initial discovery period. The curves are flatter when seeds are 
distributed in more small piles. Not surprisingly, the rate of 
collection of randomly distributed seeds (blue) rises slowly and 
sometimes even decelerates. 

Fig. 4 shows the seed rate (seeds collected per hour, not 
normalized) for the piled and randomly distributed seeds 
collected during our field observations. In all three species, the 
seed collection rate decreases as seeds are distributed across 
more piles: Repeated measures analysis shows a significant 
difference in foraging rates between species (p<0.001) and a 
significant difference in foraging rates between pile sizes 
within species (p<0.001). Within each of the three species there 
is a decreasing trend in foraging rate as seeds are dispersed 
across more piles. According to paired t-tests, foraging rates for 
4-pile (purple), 16-pile (green) and random-scatter (blue) 
distributions are significantly different from the 1-pile (red) 
distribution for P. rugosus (p=0.008, 0.011 and 0.009 
respectively) and P. desertorum (p = 0.004, 0.025 and 0.012 
respectively). Due to large standard errors, foraging rates are 
not significantly different between distributions for 
P.maricopa. 

The bars in Fig. 5 show the foraging ratios, defined as the 
seed rate from each of the three piled distributions divided by 
the seed rate for randomly distributed seeds.  

Data were log-transformed to obtain normal distributions 
(p>0.102 in Shapiro-Wilk test for normality after 
transformation.) After log2-transformation, a value of 0.0 
indicates that seeds from a piled distribution are collected at the 
same rate as randomly distributed seeds, and a value of 1.0 
indicates that seeds are collected twice as fast. There was no 
effect of species on the normalized foraging ratios  (p = 0.463) 
but a significant effect of distribution on foraging ratios within 
species (p < 0.003) again indicating that seeds were collected 
significantly more slowly when they were distributed among 
more piles.  

Because there was no significant interaction between 
species identity and pile size in determining foraging ratios, we 
combined results for all three species for more statistical power 
to compare across distributions. Fig. 6 shows the foraging 
ratios (solid bars) for all species, emphasizing the decline in 
foraging rate as seeds are dispersed across more piles. Again, 

Figure 3. Cumulative seed counts from (a) one field observation and (b) one 
run of the foraging model. The cumulative seed count is the number of seeds 
collected after the specified time or number of time steps. The color of each 
curve represents the distribution from which the seed was collected: red=1 
pile, purple=4pile, green=16 pile and blue=randomly distributed seeds. 

 
 

 
Figure 4. Mean seed rate per species. Colors represent the distribution from 
which the seeds were collected: red=1 pile, purple=4 piles, green=16 piles and 
blue=randomly distributed seeds. Error bars represent standard errors 



the within-subjects effect of seed distribution is highly 
significant (p<0.001). In pair-wise comparisons, the single pile 
is collected significantly faster than the 4 piles and 16 piles (p = 
0.004 and 0.000, respectively), but the difference between 
foraging ratios for 4 piles vs. 16 piles is not significant. 

Similar to the results of the analysis of our field data, 
foraging ratios in our foraging model are significantly 
influenced by seed distribution (p<0.001) but not by colony 
size (p>0.10). Mean foraging ratios in the ABM are 
significantly lower than those from our field data (p=0.017), 
indicating a greater ability of ants in the field to exploit piled 
foods relative to their collection of randmoly distributed foods; 
however, a non-significant within-subjects interaction of seed 
distribution and species relative treatment of foods from 
different size piles is similar, with the highest foraging ratios 
associated with seed distributions clustered in the smallest 
number of piles (Fig. 5). 

Fig. 5 illustrates similar patterns for foraging ratios from 
field experiments and model when data from the three species 
are pooled. The ratios are smaller in the model, but the shape of 
the relationship is similar to the field: the single red piles are 
collected much faster than the 4 purple piles and the 16 green 
piles (p = 0.004 and 0.000, respectively). The difference in 
foraging ratios between purple and green piles are not 
significant. 

IV. DISCUSSION 
A. Summary  

Foraging rates increase as seeds are concentrated in fewer 
larger piles in the field and in our model, consistent with our 
primary hypothesis. In our recruitment ABM, information was 
communicated among ants and exploited using pheromone-
mediated recruitment. This enabled the ants to collect seeds 
faster from bigger piles. We hypothesized that communication 
among ants is also relevant in determining foraging rates in the 
field, but perhaps by different or additional mechanisms. 

In contrast to our second hypothesis, foraging ratios were 
not affected by species identity in the field (where species vary 

substantially in size), or by colony size (ranging from 100 to 
1000 foragers) in the foraging model.  

B. Models Complement Field Studies 
Our model and field studies were designed to quantify how 

much faster ants collect clumped seeds and how the rate of 
seed collection depends on colony size. We do not know 
which behaviors ants in the field use, and we have only very 
rough estimates of colony size based on species identity. In 
contrast, our ABM simulated foraging using pheromone-
mediated recruitment for precisely specified colony sizes.  

When we replicated our experimental seed distribution in 
the ABM, the relative increase in the foraging ratio as pile size 
increased was similar to our field data, with a non-significant 
increase in foraging ratio for 16 to four piles, and a large, 
significant increase between four piles and one pile. However, 
the foraging ratios in the model were lower than those from 
the field overall. ABM parameters were ‘evolved’ using 
genetic algorithms to maximize seed intake in a distribution of 
50% of seeds in piles and 50% randomly scattered [35]. It is 
likely that evolving parameters for other seed distributions 
would change the recruitment behavior in the model, which 
may explain why recruitment ratios were lower than in the 
field.  

Our foraging model should be interpreted as one of many 
possible foraging models. There may be other behaviors in 
addition to, or instead of, pheromone-mediated recruitment 
that ants employ to exchange information that might produce 
similar foraging results. Site fidelity is one such behavior: 
when Pogonomyrmex foragers find seeds, they often 
remember where that seed was found and repeatedly return to 
that location until the food source is depleted [38]. Other 
researchers have hypothesized that seed harvesters rarely 
recruit in nature and that site fidelity may be sufficient to 
collect piles of seeds quickly [21, 24, 32, 38]. For seed piles 
small enough that a single ant can collect all the seeds in a 
patch before the colony ceases foraging activity for the day, 
there may be no benefit in recruiting other foragers to that pile.  
The extent to which site fidelity and pheromone recruitment 
are used by harvester ants, and how effective each behavior is 
in increasing foraging on clumped resources remains a 
promising area for future ABMs to explore. Understanding 
how much memory and information exchange between agents 
can improve distributed search is relevant for artificial systems 
like robot swarms as well as biological systems. 
C. Does Colony Size Matter? 

Not surprisingly, colonies with more foragers collected a 
larger total number of seeds in the field and in our model 
(Fig.s4). However, we expected that large colonies would be 
particularly good at collecting seeds from large piles. We 
measure this effect with the foraging ratio, which normalizes 
the rate of collection of piled seeds by that of randomly 
distributed seeds.  Our analysis indicates that large and small 
colonies collected seeds from large piles equally well; colony 
size had no effect on foraging ratio in the field or models 
(Fig.s5). However, these results should be interpreted in the 
context of our study design in which seed piles were placed 
closer to smaller colonies. We initially hypothesized that even 

 
 
 

Figure 5. Bars represent mean ratios (rate of piled seeds divided by rate of 
random seeds) for three clumped distributions and three species. Solid bars are 
field ratios and pattern bars are model ratios. Colors represent the distribution 
that the seeds were collected from: red=1 pile, purple=4 pile and green=16 
pile distributions. Error bars are std. errors. Ratios are log2-transformed. 



given equal foraging access to baits by foragers of colonies of 
different sizes, large colonies might take advantage of their 
collectively larger communication networks to collect seeds in 
large piles relatively faster. This hypothesis was not supported. 

Natural seed distributions are not adjusted to favor more 
piles closer to small colonies, so the effect of colony size on 
foraging might be very different given a more natural seed 
distribution. Colony size has profound effects on life 
history[39]  and foraging strategy [6, 27], thus more study of 
the affect of colony size on foraging is warranted. 

D. The Value of Information 
Information is a crucial currency for animals since 

informed individuals can adapt behavior to environmental 
conditions [40], but information is rarely measured in terms of 
its contributions to fitness [41, 42]. By quantifying how 
information improves foraging, we can begin to measure 
information in terms relevance to colony fitness or to 
performance metrics for artificial systems. 

Fig. 6 shows that foraging ratios for each piled distribution 
increase (from 0.3 to 0.5 to 1.2) as the entropy of the 
distribution decreases from one bit (1 pile), two bits (4 piles) 
and four bits (16 piles). The time for ants to find the seeds 
increases roughly proportionally to the increase in the entropy 
of the distribution. So, these ants exploit the increased 
information available upon discovering a pile in lower-entropy 
distributions to improve whole colony foraging intake. 

Intuitively, an ant colony needs more information to exploit 
seeds if those seeds are distributed in more piles. A forager that 
finds a large pile greatly reduces the entropy of that 
distribution. For example, if an ant finds a seed from a 1-pile 
distribution, the entropy of that distribution is reduced to zero; 
the ant colony has information about the location of all the 
seeds in that pile. Additionally, the ant can convey the location 
of these seeds to its nest mates and attract more foragers to the 
pile, resulting in a faster foraging rate.  

Our results can also be interpreted in the context of a recent 
analysis of the fitness value of information [42]. Given an 
uncertain environment, the strategies that maximize fitness use 
effective bet hedging such that the probability of investing in 
any particular phenotype is proportional to the certainty that the 
environment will favor that phenotype. A cue that reduces 
uncertainty about the environment allows an organism to invest 
more in the appropriate phenotype. So, the cue has fitness value 
proportional to the amount of reduction in uncertainty, which is 
the information encoded in the cue. Since ant colonies do not 
know the distribution of the seeds, the colonies will “bet” on a 
strategy according to cues that reduce uncertainty about the 
location and availability of seeds in the environment. These 
cues are conveyed to the colony with the discovery of each pile 
of seeds, and the colony responds with a strategy appropriate to 
the average availability and distribution of seeds in that 
species’ evolutionary environment. 

While [42] describes the fitness value of information over 
evolutionary time, the fitness value of information for the ants 
can be measured over the lifetime of an individual colony. In 
our ABM, the strength of a pheromone trail is a cue that 
reduces uncertainty about the location of seeds. When seeds are 

clumped into larger piles, the cues encoded in the pheromone 
trail are more valuable, and the improvement in foraging is 
proportional to the information encoded in the cue. Thus, we 
suggest that the colony improves foraging rates in proportion to 
the information that an ant can convey upon finding a seed.  
The colony bet-hedges by allocating foragers to piles in 
proportion to the information about seed locations in that pile.  
Given that a colony faces an unknown distribution, this strategy 
maximizes seed intake rates over the life of the colony.  

V. CONCLUSION 
The spatial distribution of food available to foraging ants 

was manipulated in field studies and in an Agent Based Model. 
Like earlier Alife studies [29, 30], we found that the value of 
communication depends on the distribution of food in the 
environment. Our field study suggests that this is true not just 
for simulated ants, but also for real ants in the field.  In both 
cases, seeds are collected significantly faster when they are 
clustered in fewer piles and therefore can be found with less 
information. The increase in foraging rate is indistinguishable 
across colonies ranging from 100 to 1000 foragers. 
Additionally, ants appear to effectively bet-hedge with their 
foraging strategy, optimizing the tradeoff between exploiting 
known locations of seeds and searching for new ones. Ants 
exhibited seed collection rates inversely proportional to the 
information cost of specifying the seed locations. Quantifying 
the value of information and its communication among social 
foragers may help us understand how animals use information 
more generally. It may also help us to assess the value of 
information exchange between components in engineered 
distributed systems. Exploring different mechanisms for 
turning information into fitness or performance is a fruitful area 
for Alife research. 
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Figure 6. Bars represent mean foraging ratios for all species combined. Bars 
with solid colors represent field ratios and bars with diagonal pattern represent 
foraging model ratios. Colors represent the distribution from which the seeds 
were collected: red=1 pile, purple=4 pile and green=16 pile distributions. Error 
bars are standard errors. 



REFERENCES 
[1] D. Stephens and J. Krebs, Foraging theory: Princeton University Press, 

1986. 
[2] J. Fewell, "Energetic and time costs of foraging in harvester ants, 

Pogonomyrmex occidentalis," Behavioral Ecology and Sociobiology, 
vol. 22, pp. 401-408, 1988. 

[3] T. Caraco and L. Wolf, "Ecological determinants of group sizes of 
foraging lions," The American Naturalist, vol. 109, pp. 343-352, 1975. 

[4] D. Davidson, "Species diversity and community organization in desert 
seed-eating ants," Ecology, vol. 58, pp. 712-724, 1977. 

[5] R. Beckers, S. Goss, J. Deneubourg, and J. Pasteels, "Colony size, 
communication, and ant foraging strategy," Psyche: A Journal of 
Entomology, vol. 96, pp. 239-256, 1989. 

[6] J. Jun, J. Pepper, V. Savage, J. Gillooly, and J. Brown, "Allometric 
scaling of ant foraging trail networks," Evolutionary Ecology Research, 
vol. 5, pp. 297-303, 2003. 

[7] C. Detrain, J. Deneubourg, and J. Pasteels, Information processing in 
social insects: Birkhauser, 1999. 

[8] B. Holldobler, "Foraging and spatiotemporal territories in the honey ant 
Myrmecocystus mimicus Wheeler (Hymenoptera: Formicidae)," 
Behavioral Ecology and Sociobiology, vol. 9, pp. 301-314, 1981. 

[9] T. Seeley, A. Mikheyev, and G. Pagano, "Dancing bees tune both 
duration and rate of waggle-run production in relation to nectar-source 
profitability," Journal of Comparative Physiology A: Neuroethology, 
Sensory, Neural, and Behavioral Physiology, vol. 186, pp. 813-819, 
2000. 

[10] T. Seeley, The wisdom of the hive: Harvard University Press Cambridge, 
Massachusetts:, 1995. 

[11] D. Jackson, S. Martin, M. Holcombe, and F. Ratnieks, "Longevity and 
detection of persistent foraging trails in Pharaoh's ants, Monomorium 
pharaonis (L.)," Animal Behaviour, vol. 71, pp. 351-359, 2006. 

[12] J. Deneubourg, S. Aron, S. Goss, and J. Pasteels, "The self-organizing 
exploratory pattern of the argentine ant," Journal of Insect Behavior, vol. 
3, pp. 159-168, 1990. 

[13] B. Holldobler and E. Wilson, The ants: Harvard University Press, 
Cambridge, 1990. 

[14] T. Arora and M. Moses, "Using Ant Colony Optimization for Routing in 
VLSI Chips," 2009, p. 145. 

[15] E. Bonabeau, M. Dorigo, and G. Theraulaz, "Inspiration for optimization 
from social insect behaviour," Nature, vol. 406, pp. 39-42, 2000. 

[16] M. Dorigo, M. Birattari, and T. Stutzle, "Ant colony optimization," IEEE 
Computational Intelligence Magazine, vol. 1, pp. 28-39, 2006. 

[17] J. Timmis, M. Amos, and W. Banzhaf, "Going Back to our Roots: 
Second generation biocomputing.," Int. J. on Unconventional 
Computing, vol. 2, pp. 349-382. 

[18] C. Carroll and D. Janzen, "Ecology of foraging by ants," Annual Review 
of Ecology and Systematics, vol. 4, pp. 231-257, 1973. 

[19] J. Traniello, "Foraging strategies of ants," Annual Review of 
Entomology, vol. 34, pp. 191-210, 1989. 

[20] B. Holldobler and E. Wilson, The superorganism: the beauty, elegance, 
and strangeness of insect societies: WW Norton & Co Inc, 2008. 

[21] D. Gordon, "Behavioral flexibility and the foraging ecology of seed-
eating ants," The American Naturalist, vol. 138, pp. 379-411, 1991. 

[22] R. Bernstein, "Foraging strategies of ants in response to variable food 
density," Ecology, pp. 213-219, 1975. 

[23] D. Gordon, Ants at work: how an insect society is organized: Free Press, 
1999. 

[24] J. Fewell, "Directional fidelity as a foraging constraint in the western 
harvester ant, Pogonomyrmex occidentalis," Oecologia, vol. 82, pp. 45-
51, 1990. 

[25] D. Sumpter, "The principles of collective animal behaviour," 
Philosophical Transactions of the Royal Society B: Biological Sciences, 
vol. 361, p. 5, 2006. 

[26] M. Kaspari and E. Vargo, "Colony size as a buffer against seasonality: 
Bergmann's rule in social insects," American Naturalist, vol. 145, p. 610, 
1995. 

[27] C. Anderson and D. McShea, "Individual versus social complexity, with 
particular reference to ant colonies," Biological Reviews, vol. 76, pp. 
211-237, 2001. 

[28] M. Moses, "Metabolic scaling, from insects to societies," Ph.D. 
Dissertation, Department of Biology, University of New Mexico, 2005. 

[29] P. Schermerhorn and M. Scheutz, "The impact of communication and 
memory in hive-based foraging agents," 2009, pp. 29-36. 

[30] B. Connelly, P. McKinley, and B. Beckmann, "Evolving cooperative 
pheromone usage in digital organisms," in Symposium on Artificial Life, 
2009, pp. 184-191. 

[31] R. Johnson, "Seed-harvester ants (Hymenoptera: Formicidae) of North 
America: an overview of ecology and biogeography," Sociobiology, vol. 
36, pp. 89-122, 2000. 

[32] T. Crist and J. MacMahon, "Foraging patterns of Pogonomyrmex 
occidentalis (Hymenoptera: Formicidae) in a shrubsteppe ecosystem: 
the roles of temperature, trunk trails, and seed resources," Environmental 
Entomology, vol. 20, pp. 265-275, 1991. 

[33] B. Holldobler, "Recruitment behavior, home range orientation and 
territoriality in harvester ants, Pogonomyrmex," Behavioral Ecology and 
Sociobiology, vol. 1, pp. 3-44, 1976. 

[34] M. Mitchell, An introduction to genetic algorithms: The MIT press, 
1998. 

[35] K. Letendre and M. Moses, "Simulating the evolution of recruitment 
behavior in foraging ants," (in review), 2010. 

[36] C. E. Shannon, "The mathematical theory of communication," 
University of Illinois Press, 1949. 

[37] B. Robert, Ash. New York, NY: Dover Publications, 1965. 
[38] B. Beverly, H. McLendon, S. Nacu, S. Holmes, and D. Gordon, "How 

site fidelity leads to individual differences in the foraging activity of 
harvester ants," Behavioral Ecology, vol. 20, pp. 633-638, 2009. 

[39] C. Hou, M. Kaspari, H. Vander Zanden, and J. Gillooly, "Energetic basis 
of colonial living in social insects," Proceedings of the National 
Academy of Sciences, vol. 107, pp. 3634-3638, 2010. 

[40] S. Dall, L. Giraldeau, O. Olsson, J. McNamara, and D. Stephens, 
"Information and its use by animals in evolutionary ecology," Trends in 
Ecology & Evolution, vol. 20, pp. 187-193, 2005. 

[41] A. Dornhaus, F. Klugl, C. Oechslein, F. Puppe, and L. Chittka, "Benefits 
of recruitment in honey bees: effects of ecology and colony size in an 
individual-based model," Behavioral Ecology, vol. 17, p. 336, 2006. 

[42] M. Donaldson Matasci, C. Bergstrom, and M. Lachmann, "The fitness 
value of information," Oikos, vol. 119, pp. 219-230, 2010. 

 

 


